Time filter

Source Type

Cleveland, OH, United States

Li G.,Case Western Reserve University | Miskimen K.L.,Case Western Reserve University | Wang Z.,Case Western Reserve University | Xie X.Y.,Summa Health Barberton Hospital | And 7 more authors.
Blood | Year: 2010

Phosphorylated signal transducer and activator of transcription 5 (STAT5) is a biomarker and potential molecular target for hematologic malignancies. We have shown previously that lethal myeloproliferative disease (MPD) in mice mediated by persistently activated STAT5 (STAT5aS711F) requires the N-domain, but the mechanism was not defined. We now demonstrate by retrovirally complementing STAT5abnull/null primary mast cells that relative to wild-type STAT5a, STAT5a lacking the N-domain (STAT5aΔN) ineffectively protected against cytokine withdrawal-induced cell death. Both STAT5a and STAT5aΔN bound to a site in the bcl-2 gene and both bound near the microRNA 15b/16 cluster. However, only STAT5a could effectively induce bcl-2 mRNA and reciprocally suppress miR15b/16 leading to maintained bcl-2 protein levels. After retroviral complementation of STAT5abnull/null fetal liver cells and transplantation, persistently active STAT5aS711F lacking the N-domain (STAT5aΔNS711F) was insufficient to protect c-Kit+Lin-Sca-1+ (KLS) cells from apoptosis and unable to induce bcl-2 expression, whereas STAT5aS711F caused robust KLS cell expansion, induction of bcl-2, and lethal MPD. Severe attenuation of MPD by STAT5aΔNS711F was reversed by H2k/bcl-2 transgenic expression. Overall, these studies define N-domain-dependent survival signaling as an Achilles heel of persistentSTAT5 activation and highlight the potential therapeutic importance of targeting STAT5 N-domain-mediated regulation of bcl-2 family members. © 2010 by The American Society of Hematology. Source

Marr R.A.,Rosalind Franklin University of Medicine and Science | Thomas R.M.,Center for Stem Cell and Regenerative Medicine | Peterson D.A.,Rosalind Franklin University of Medicine and Science
Future Neurology | Year: 2010

Neurogenesis is the process by which new neural cells are generated from a small population of multipotent stem cells in the adult CNS. This natural generation of new cells is limited in its regenerative capabilities and also declines with age. The use of stem cells in the treatment of neurodegenerative disease may hold great potential; however, the age-related incidence of many CNS diseases coincides with reduced neurogenesis. This review concisely summarizes current knowledge related to adult neurogenesis and its alteration with aging and examines the feasibility of using stem cell and gene therapies to combat diseases of the CNS with advancing age. © 2010 Future Medicine Ltd. Source

Song H.,International Medical University | Song H.,Liaocheng University | Song H.,Center for Stem Cell and Regenerative Medicine | Su X.,International Medical University | And 22 more authors.
Journal of Biomedical Nanotechnology | Year: 2015

Cancer initiating cells (CIC) are tumorigenic cancer cells that have properties similar to normal stem cells. CD20 is a phenotype of melanoma CIC that is responsible for melanoma drug resistance. Vincristine (VCR) is commonly used in melanoma therapy; however, it has been found ineffective against CIC. To target CD20+ melanoma CIC, we prepared VCR-containing immunoliposomes that were conjugated to CD20 antibodies (VCR-Lip-CD20). The drug release profile and the antibody-mediated targeting of the immunoliposomes were optimized to target CD20+ melanoma CIC. The immunoliposomes had desirable particle size (163 nm), drug encapsulation efficiency (91.8%), and drug release profile. We demonstrated that these immunoliposomes could successfully target more than 55% of CD20+ Chinese Hamster Ovary cells (CHO-CD20) even when the CHO-CD20 cells accounted for only 0.1% of a mixed population of CHO-CD20 and CHO cells. After treating WM266-4 melanoma mammospheres for 96 h, the IC50 values of the drug delivered in VCRLip-CD20, VCR-Lip (VCR liposomes), and VCR were found to be 53.42, 98.99, and 99.09 g/mL, respectively, suggesting that VCR-Lip-CD20 was 1.85 times more effective than VCR-Lip and VCR. VCR-Lip-CD20 could almost completely remove the tumorigenic ability of WM266-4 mammospheres in vivo, and showed the best therapeutic effect in WM266-4 melanoma xenograft mice. Significantly, VCR-Lip-CD20 could selectively kill CD20+ melanoma CIC in populations of WM266-4 cells both in vitro and in vivo. We demonstrated that VCR-Lip-CD20 has the potential to efficiently target and kill CD20+ melanoma CIC. © 2015 American Scientific Publishers All rights reserved. Source

Su X.,International Medical University | Song H.,International Medical University | Song H.,Liaocheng University | Song H.,Center for Stem Cell and Regenerative Medicine | And 20 more authors.
Nanomedicine | Year: 2015

Aim: To develop novel nanoliposomes (Lip-ADR-Cer) codelivering doxorubicin (ADR) and PEGylated C16 ceramide (PEG-ceramide C16) to overcome multidrug resistance. Materials & methods: The antitumor activity and mechanism of Lip-ADR-Cer were evaluated. Results & conclusion: The IC50 of Lip-ADR-Cer after 48-h treatment with the MCF-7/ADR and HL-60/ADR cancer cells, both being ADR resistant, was 2.2- and 1.4-fold effective respectively versus the general nanoliposomes with no PEG-ceramide C16 (Lip-ADR). The antitumor assay in mice bearing MCF-7/ADR or HL-60/ADR xenograft tumors confirmed the superior antitumor activity of Lip-ADR-Cer over Lip-ADR. We found that the improved therapeutic effect of Lip-ADR-Cer may be attributed to both of the cytotoxic effect of PEG-ceramide C16 and glucosylceramide synthase overexpression in multidrug resistance cells. © 2015 Future Medicine Ltd. Source

Zheng L.L.,Zhejiang University | Wang F.Y.,Zhejiang University | Cong X.X.,Zhejiang University | Cong X.X.,Center for Stem Cell and Regenerative Medicine | And 14 more authors.
Journal of Biological Chemistry | Year: 2015

Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription.Aconserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Source

Discover hidden collaborations