Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-02-2014 | Award Amount: 6.15M | Year: 2015

Prime objective of the Sharc25 project is to develop super-high efficiency Cu(In,Ga)Se2 (CIGS) solar cells for next generation of cost-beneficial solar module technology with the world leading expertise establishing the new benchmarks of global excellence. The project partners ZSW and EMPA hold the current CIGS solar cell efficiency world records of 21.7% on glass and 20.4% on polymer film, achieved by using high (~650C) and low (~450C) temperature CIGS deposition, respectively. Both have developed new processing concepts which open new prospects for further breakthroughs leading to paradigm shift for increased performance of solar cells approaching to the practically achievable theoretical limits. In this way the costs for industrial solar module production < 0.35/Wp and installed systems < 0.60/Wp can be achieved, along with a reduced Capex < 0.75/Wp for factories of >100 MW production capacity, with further scopes for cost reductions through production ramp-up. In this project the performance of single junction CIGS solar cells will be pushed from ~21% towards 25% by a consortium with multidisciplinary expertise. The key limiting factors in state-of-the-art CIGS solar cells are the non-radiative recombination and light absorption losses. Novel concepts will overcome major recombination losses: combinations of increased carrier life time in CIGS with emitter point contacts, engineered grain boundaries for active carrier collection, shift of absorber energy bandgap, and bandgap grading for increased tolerance of potential fluctuations. Innovative approaches will be applied for light management to increase the optical path length in the CIGS absorber and combine novel emitter, front contact, and anti-reflection concepts for higher photon injection into the absorber. Concepts of enhanced cell efficiency will be applied for achieving sub-module efficiencies of >20% and industrial implementation strategies will be proposed for the benefit of European industries.


Europe has invoked the SET-Plan to design and implement an energy technology policy for Europe to accelerate the development and deployment of cost-effective renewable energy systems, including photovoltaics. With lower cost of solar electricity, PV could significantly contribute to the achievements of the 20-20-20 objectives. The Joint Program on PV of the European Energy Research Alliance (EERA-PV) aims to increase the effectiveness and efficiency of PV R&D through alignment and joint programming of R&D of its member institutes, and to contribute to the R&D-needs of the Solar Europe Industry Initiative. In CHEETAH, all EERA-PV members will, through collaborative R&D activities, (1) focus on solving specific bottlenecks in the R&D Joint Program of EERA-PV, (2) strengthen the collaboration between PV R&D performers in Europe through sharing of knowledge, personnel and facilities, and (3) accelerate the implementation of developed technologies in the European PV industry. Specifically, CHEETAH R&D will support Pillar A (performance enhancement & energy cost reduction) of the SEII Implementation Plan, through materials optimization and performance enhancement. CHEETAHs objectives are threefold: 1) Developing new concepts and technologies for wafer-based crystalline silicon PV (modules with ultra-thin cells), thin-film PV (advanced light management) and organic PV (very low-cost barriers), resulting in (strongly) reduced cost of materials and increased module performance; 2) Fostering long-term European cooperation in the PV R&D sector, by organizing workshops, training of researchers, efficient use of infrastructures; 3) Accelerating the implementation of innovative technologies in the PV industry, by a strong involvement of EPIA and EIT-KIC InnoEnergy in the program It is the ambition of CHEETAH to develop technology and foster manufacturing capabilities so that Europe can regain and build up own manufacturing capacity in all parts of the value chain in due time.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: ENERGY.2011.2.1-2;NMP.2011.1.2-1 | Award Amount: 9.64M | Year: 2012

CIGS solar module technology on rigid glass substrate is already mature and industrial companies are producing hundreds of MWp each year. Bringing flexible CIGS solar modules to industrial maturity will yield the next breakthrough for further cost reduction by taking into account the inherent advantages of thin film technology, e.g. high throughput and large scale coating with less energy and material consumption. The aim of R2R-CIGS is to develop efficient flexible solar modules by implementing innovative cost-effective processes such that production costs below 0.5 /Wp can be achieved in large volume factories with annual capacity of 500MWp in future. The main objectives of this project are: Flexible solar cells on polymer film with 20% efficiency and mini-module with 16% efficiency by control of composition gradient, surface, and interface properties on nano-scale Transfer of innovative buffer layer process for roll-to-roll manufacturing and replacing problematic CBD-CdS by higher yield processes such as (spatial) ALD and ultrasonic spray Developing fully laser based patterning technology for monolithic interconnection in R2R pilot-line Scale-up of static multi-stage CIGS deposition process from laboratory scale towards inline R2R compatible processes Implementation of the up-scaled multi-stage CIGS deposition process into pilot lines for R2R manufacturing of flexible CIGS modules Development of moisture barrier with WVTR < 5x10-4 g/m2/d and cost-effective encapsulation Decrease cost of ownership for enabling production costs below 0.5 /Wp for a commercial plant with annual production of 500 MWp in future


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2012.1.2 | Award Amount: 14.72M | Year: 2013

Several automotive OEMs have announced plans for the commercialization of fuel cell vehicles from 2014/15. Industrial partnerships such as H2-Mobility in Germany, the UK or Hydrogen Highway in Scandinavia are working to establish the required initial H2- infrastructure While this is a clear signal for the functional readiness of fuel cell technology in automotive application, durability, efficiency, power density and cost of the fuel cell stack need further advancements and in some cases substantial improvement in years to come. Industrial fuel cell development in Europe lacks both, state-of-the-art stack products and competitive stack suppliers for automotive application. Only a few European component suppliers can deliver mature state-of-the-art stack components (MEA, bipolar plates) with the requested specifications. Auto-Stack Core establishes a coalition with the objective to develop best-of-its-class automotive stack hardware with superior power density and performance while meeting commercial target cost. The project consortium combines the collective expertise of automotive OEMs, component suppliers, system integrators and research institutes and thus removes critical disconnects between stakeholders. The technical concept is based on the Auto-Stack assessments which were carried out under the FCH JU Grant Agreement No. 245 142 and reflects the system requirements of major OEMs. It suggests a platform concept to substantially improve economies of scale and reduce critical investment cost for individual OEMs by sharing the same stack hardware for different vehicles and vehicle categories as well as selected other industrial applications thus addressing one of the most critical challenges of fuel cell commercialization. Presence of key industrial players in the project and strict orientation towards industrial requirements shall facilitate commercial utilization of the project results. The project is of strategic importance for European competitiveness.


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2013.3.2;SP1-JTI-FCH.2013.3.1 | Award Amount: 3.19M | Year: 2014

MATISSE is a 36-month project targeting to the delivery of PEMFC advanced cells and stacks for stationary applications. The project methodology will include assessment of stack incremented with new materials and processes developed during the project. The project will address three stack designs for each of the stationary conditions of operation of the fuel cell i.e. H2/O2, H2/air and reformate H2/air. MATISSE intends to achieve some objectives in term of stack robustness, lifetime, performance and cost. For this purpose, advanced materials solutions will be performed and validated as proof of concept for the manufacturability of cell and stack. New textured X-Y gradient electrodes will be optimized and manufactured taking into account the localized current density of electrode inside the cell during operation. Some localized areas of catalyst loading will be defined following the risk of electrode flooding part or of membrane drying. The new MEA should lead to an increase of durability of stack and reduction of degradation phenomenon. The manufacturability of cells and stack will be demonstrated with the electrode manufacturing using a continuous screen printing process and by the automatization of the membrane electrodes assembly step. Moreover, an automatized robot will be used to proceed at stack assembly allowing reaching a better mechanical stability under pressure and a better alignment of components. This work will allow reducing the cost so as to meet the market target allowing a large deployment of stationary PEMFC system. The technical-economic cost assessment will be carried out during the project in order to confirm the progression of MATISSE stack technology toward the objectives. MATISSE consortium is based on 3 industrial partners recognized at the international level for their activities in stationary application. 2 RTO centres play part in the project to develop and assess new innovative solutions on LT-PEMFC MEA and stacks technology.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: GV-1-2014 | Award Amount: 5.93M | Year: 2015

The FiveVB project will develop a new cell technology based on innovative materials such as high capacity anodes, high voltage cathodes and stable, safe and environmentally friendly electrolytes. Since main European industry partners representing the value chain from materials supplier to car manufacturer are involved, this program will support and enable the development of a strong and competitive European battery industry. The multidisciplinary project team will also assure not only early technology integration between materials, cells, batteries and application requirements, but also a subsequent industrialization of the developed technology. With an integrated trans-disciplinary cell development approach we will also realize an early feedback loop from battery and vehicle level to material suppliers and a feed-forward of relevant information to industrial scale cell production. Through an iterative and holistic approach two generations of cell chemistries (anode, cathode, binder and electrolyte) will be evaluated and optimized to improve electrochemical performance of active materials and related new cell technology in terms of energy density, lifetime, safety and costs. Furthermore, we will address early development and validation of test procedures for the reduction of development time from material to cell by e.g. accelerated test procedures. Among other objectives, in particular the lifetime and aging aspects will be addressed in depth in FiveVB, but also input for future European and International standardization will be provided. Thus, one major result of FiveVB is a hard case prismatic cell in PHEV1 format, developed according to automotive requirements and produced on a representative prototype facility.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-01-2014 | Award Amount: 3.25M | Year: 2015

The aim of this proposal is to develop wide band gap thin film solar cells based on kesterite absorbers for future application in high efficiency and low cost tandem PV devices. The SWInG working group will focus both on the development of the processes for the synthesis of such solar cells based on the Cu2ZnXY4 (with X=Sn, Si and Y= S, Se) compounds and on the understanding of the physical and electrical properties of the high band gap absorber in order to reach high conversion efficiency. The key research challenges will be: developing up-scalable processes for the synthesis of the absorbers; defining the specifications for high quality wide band gap absorbers as well as suitable back contact and buffer/window layers; assessing the potential of this technology for PV applications. The wide band gap thin films solar cells developed in this project are expected to reach a stable efficiency of 15 % on a laboratory scale and 12 % for a mini-module prototype. The publications of specifications for the synthesis of high quality Cu2ZnXY4 absorber as well as suitable back/front contact are expected. The lead users will be PV modules manufacturers that work so far with thin films technologies, as well as the companies that design and produce the machines for the synthesis of such devices. The results will be disseminated and communicated to the European PV industries and the scientific community. The intensive exchange of researchers between the partners during the project will also lead to an enhanced European collaboration in the research field of thin film solar cells.


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2011.1.5;SP1-JTI-FCH.2011.1.6 | Award Amount: 9.14M | Year: 2012

The main objective of the planned project IMPACT is to increase the life-time of fuel cells with membrane-electrode assemblies containing ultra low Pt-loading (< 0.2 mg cm-2) for automotive applications. The economic requirements to reduce Pt loading leads to the challenge to maintain durability and performance, an aspect which has not been addressed sufficiently in public projects and studies. A durability of 5000 h under dynamic operation conditions with ultra low loading is envisioned for automotive applications. IMPACT aims at improving significantly durability in the automotive application at reduced PGM loadings by material development and MEA development. Development ist performed on the main components of the cell, namely the membrane, the gas diffusion media and the electrodes. The basis for the durability is extensive testing at the industrial and research partner`s facilities under diverse and highly dynamic conditions and comprehensive and detailed analysis and evaluation of degradation processes and their importance for fuel cell performance loss. This analysis is utilized for the derivation of mitigation strategies by component modification and optimization of operation modes. The mitigation strategies are experimentally validated and consecutively lead to a demonstration of the improved durability in an predefined stack. IMPACT also aims at providing a cost analysis and an evaluation of the technical feasibility for large scale utilization of the project achievements. Recommendation and dissemination activities are planed within scientific workshops, publication of the results in scientific journals, and using project fact sheets.


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2012.3.3 | Award Amount: 3.27M | Year: 2013

The SAPPHIRE project will develop an integrated prognostics and health management system (PHM) including a health-adaptive controller to extend the lifetime and increase the reliability of heat and power-producing systems based on low-temperature proton-exchange membrane fuel cells (LT-PEMFC). The PHM system can actively track the current health and degradation state of the fuel-cell system, and through the health-adaptive control counteract the degradation of cells and balance of plant, and thereby boost the lifetime of the controlled system beyond the current lifetime expectancy. An important part of project is to develop novel prognostics approaches implemented in the PHM for estimation of the remaining useful life (RUL) of the PEMFC. An efficient sensor configuration for control will be chosen using controllability analysis methods, also including indirect sensing/estimation techniques to replace expensive measurement principles. Based on sensor inputs and input from the control system, the PHM algorithms identify the probable failure modes trajectories and estimate the remaining useful life. The consortiums competence ranges from first principles estimation, to signal processing, regression and data-driven techniques, such as neural networks. This ensures an efficient choice of methods. The project covers a full cycle of research activities, from requirement specification and laboratory experiments, through study of degradation phenomena and selection of prognostic methods, to synthesis of the control system and its testing on the target PEMFC system. A technical-economical analysis will be performed in order to assess the impact of the developed tool in terms of lifetime improvement. The project is expected to produce hardware and software solutions and have a significant scientific output. The implemented solutions resulting from the project will be tested and validated by the research and industrial partners.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: GC.NMP.2013-1 | Award Amount: 11.49M | Year: 2013

Li-ion technologies initiated in the 90 at a fast development pace thanks mainly to emerging ICTs with more than 20 GWh sold in 2010. Soon, it appeared as a credible technology for electrical vehicles as it could provide average energy densities of about 140 Wh/kg. However and since then,major breakthroughs have been expected to reach higher storage levels of 250 Wh/kg on battery system level with an acceptable lifetime of 3000 cycles in order to develop an affordable economical business plan for car batteries. MAT4BAT builds-up its EVs battery strategy on advanced materials and pilot line processes, proposing three novel concepts of cells initiating from a state-of-the art combination of cell materials (NMC/Carbonate liquid electrolyte/Graphite). MAT4BAT will address all critical ageing mechanisms associated to this technology and having direct impacts on product lifetime & safety by implementing two work programs for Battery Assessment (#1) and Battery Technologies (#2). Program #1 will set a framework to define critical charging modalities for a battery system during practical use and associated testing tools & methods for relevant functional performance & lifetime assessment. Within this framework, the program #2 will implement three generations of cells with a focus on electrolytes which will be steadily transformed from Liquid to Gel to All-Solid state electrolytes in order to promote substantial gain in cell lifetime and safety by preventing degradations and hazards and improving energy density with a separator-free cell (all-solid state electrolyte). 100 state-of-the-art commercial cells will be assessed to define normal and critical charge/discharge conditions of testing with appropriate testing protocols. Besides,materials increments will be screened out on coin-cells prior a benchmarking of most promising materials at full cells level. Eventually,(10-40 A.h) prototypes will be produced to validate MAT4BAT best technologies against quantified objectives.

Loading Center for Solar Energy and Hydrogen Research collaborators
Loading Center for Solar Energy and Hydrogen Research collaborators