Center for Sensory Biology

Cape Saint Claire, MD, United States

Center for Sensory Biology

Cape Saint Claire, MD, United States
SEARCH FILTERS
Time filter
Source Type

Kaneko-Goto T.,RIKEN | Sato Y.,RIKEN | Katada S.,RIKEN | Katada S.,University of Tokyo | And 9 more authors.
Journal of Neuroscience | Year: 2013

The basic scheme of odor perception and signaling from olfactory cilia to the brain is well understood. However, factors that affect olfactory acuity of an animal, the threshold sensitivity to odorants, are less well studied. Using signal sequence trap screening of a mouse olfactory epithelium cDNA library, we identified a novel molecule, Goofy, that is essential for olfactory acuity in mice. Goofy encodes an integral membrane protein with specific expression in the olfactory and vomeronasal sensory neurons and predominant localization to the Golgi compartment. Goofy-deficient mice display aberrant olfactory phenotypes, including the impaired trafficking of adenylyl cyclase III, stunted olfactory cilia, and a higher threshold for physiological and behavioral responses to odorants. In addition, the expression of dominant-negative form of cAMP-dependent protein kinase results in shortening of olfactory cilia, implying a possible mechanistic link between cAMP and ciliogenesis in the olfactory sensory neurons. These results demonstrate that Goofy plays an important role in establishing the acuity of olfactory sensory signaling. © 2013 the authors.


Link T.M.,Center for Sensory Biology | Park U.,Center for Sensory Biology | Caterina M.J.,Center for Sensory Biology
Nature Immunology | Year: 2010

Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)-and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P 2), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity. © 2010 Nature America, Inc. All rights reserved.


Dowdle W.E.,University of California at San Francisco | Robinson J.F.,Duke University | Andreas Kneist,RWTH Aachen | Sirerol-Piquer M.S.,CIBER ISCIII | And 18 more authors.
American Journal of Human Genetics | Year: 2011

Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS. © 2011 by The American Society of Human Genetics. All rights reserved.


Fischer W.A.,Johns Hopkins University | King L.S.,Johns Hopkins University | Lane A.P.,Center for Sensory Biology | Pekosz A.,Johns Hopkins University
Vaccine | Year: 2015

Live Attenuated Influenza Vaccine (LAIV) strains are associated with cold adapted, temperature sensitive and attenuated phenotypes that have been studied in non-human or immortalized cell cultures as well as in animal models. Using a primary, differentiated human nasal epithelial cell (hNEC) culture system we compared the replication kinetics, levels of cell-associated viral proteins and virus particle release during infection with LAIV or the corresponding wild type (WT) influenza viruses. At both 33. °C and 37. °C, seasonal influenza virus and an antigenically matched LAIV replicated to similar titers in MDCK cells but seasonal influenza virus replicated to higher titers than LAIV in hNEC cultures, suggesting a greater restriction of LAIV replication in hNEC cultures. Despite the disparity in infectious virus production, the supernatants from H1N1 and LAIV infected hNEC cultures had equivalent amounts of viral proteins and hemagglutination titers, suggesting the formation of non-infectious virus particles by LAIV in hNEC cultures. © 2015 Elsevier Ltd.


Bennett M.K.,Center for Sensory Biology | Kulaga H.M.,Center for Sensory Biology | Reed R.R.,Center for Sensory Biology
Molecular and Cellular Neuroscience | Year: 2010

Odorant-evoked activity contributes to olfactory epithelium organization and axon targeting. We examined the consequences on gene expression of a genetic disruption of the channel responsible for olfactory transduction. Genes encoding calcium-binding EF-hand motifs, were among the most highly regulated transcripts consistent with the central role of Ca2+ influx in neuronal depolarization. Several genes encoding integral membrane proteins are also highly regulated. One gene, Lrrc3b, was regulated more than 10-fold by odorant activity. Changes in expression occur within thirty minutes and are maintained for several hours. In genetic disruptions of Lrrc3b, a Lrrc3b-promoter-driven reporter adopts the activity-regulated expression of the endogenous gene. Individual olfactory glomeruli have a wide spectrum of activity levels that can be modulated by altering odor exposure. The Lrrc3b reporter mouse permits direct assessment of activity in identified glomeruli. In stable odorant environments, activity-regulated proteins provide a characteristic signature that is correlated with the olfactory receptor they express. © 2010 Elsevier Inc. All rights reserved.


Huang S.M.,Center for Sensory Biology | Li X.,Center for Sensory Biology | Yu Y.,Center for Sensory Biology | Wang J.,Center for Sensory Biology | Caterina M.J.,Center for Sensory Biology
Molecular Pain | Year: 2011

Background: The discovery of heat-sensitive Transient Receptor Potential Vanilloid (TRPV) ion channels provided a potential molecular explanation for the perception of innocuous and noxious heat stimuli. TRPV1 has a significant role in acute heat nociception and inflammatory heat hyperalgesia. Yet, substantial innocuous and noxious heat sensitivity remains in TRPV1 knockout animals. Here we investigated the role of two related channels, TRPV3 and TRPV4, in these capacities. We studied TRPV3 knockout animals on both C57BL6 and 129S6 backgrounds, as well as animals deficient in both TRPV3 and TRPV4 on a C57BL6 background. Additionally, we assessed the contributions of TRPV3 and TRPV4 to acute heat nociception and inflammatory heat hyperalgesia during inhibition of TRPV1.Results: TRPV3 knockout mice on the C57BL6 background exhibited no obvious alterations in thermal preference behavior. On the 129S6 background, absence of TRPV3 resulted in a more restrictive range of occupancy centered around cooler floor temperatures. TRPV3 knockout mice showed no deficits in acute heat nociception on either background. Mice deficient in both TRPV3 and TRPV4 on a C57BL6 background showed thermal preference behavior similar to wild-type controls on the thermal gradient, and little or no change in acute heat nociception or inflammatory heat hyperalgesia. Masking of TRPV1 by the TRPV1 antagonist JNJ-17203212 did not reveal differences between C57BL6 animals deficient in TRPV3 and TRPV4, compared to their wild-type counterparts.Conclusions: Our results support the notion that TRPV3 and TRPV4 likely make limited and strain-dependent contributions to innocuous warm temperature perception or noxious heat sensation, even when TRPV1 is masked. These findings imply the existence of other significant mechanisms for heat perception. © 2011 Huang et al; licensee BioMed Central Ltd.


McNeil B.,Center for Sensory Biology | Dong X.,Howard Hughes Medical Institute
Neuroscience Bulletin | Year: 2012

Detection of environmental stimuli that provoke an aversive response has been shown to involve many receptors in the periphery. Probably the least-studied of these stimuli are those that induce the perception of itch (pruritus), an often-experienced unpleasant stimulus. This review covers the ligands and their receptors which are known to cause primary sensory neuron activation and initiate itch sensation. Also covered are several itch-inducing substances which may act indirectly by activating other cell types in the periphery which then signal to primary neurons. Finally, progress in identifying candidate neurotransmitters that sensory neurons use to propagate the itch signal is discussed. © 2012 Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg.


Han L.,Center for Sensory Biology | Dong X.,Center for Sensory Biology | Dong X.,Howard Hughes Medical Institute
Annual Review of Biophysics | Year: 2014

The itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies. Copyright © 2014 by Annual Reviews. All rights reserved.


Green D.,Center for Sensory Biology | Dong X.,Center for Sensory Biology | Dong X.,Howard Hughes Medical Institute
Journal of Cell Biology | Year: 2016

Itch, the irritation we feel and the relief that comes from scratching, is an evolutionary warning system and defense against harmful environmental agents. Although once considered a subtype of pain, itch is now recognized as a unique sense, with its own distinct physiology and cell receptors. Here, we discuss recent advances in our understanding of itch and the molecular players that mediate this sensory modality. © 2016 Green and Dong.


PubMed | Center for Sensory Biology
Type: Journal Article | Journal: Molecular and cellular neurosciences | Year: 2010

Odorant-evoked activity contributes to olfactory epithelium organization and axon targeting. We examined the consequences on gene expression of a genetic disruption of the channel responsible for olfactory transduction. Genes encoding calcium-binding EF-hand motifs, were among the most highly regulated transcripts consistent with the central role of Ca(2+) influx in neuronal depolarization. Several genes encoding integral membrane proteins are also highly regulated. One gene, Lrrc3b, was regulated more than 10-fold by odorant activity. Changes in expression occur within thirty minutes and are maintained for several hours. In genetic disruptions of Lrrc3b, a Lrrc3b-promoter-driven reporter adopts the activity-regulated expression of the endogenous gene. Individual olfactory glomeruli have a wide spectrum of activity levels that can be modulated by altering odor exposure. The Lrrc3b reporter mouse permits direct assessment of activity in identified glomeruli. In stable odorant environments, activity-regulated proteins provide a characteristic signature that is correlated with the olfactory receptor they express.

Loading Center for Sensory Biology collaborators
Loading Center for Sensory Biology collaborators