Entity

Time filter

Source Type


Marinovic W.,Center for Sensorimotor Neuroscience | Marinovic W.,University of Queensland | Tresilian J.R.,University of Warwick | de Rugy A.,Center for Sensorimotor Neuroscience | And 3 more authors.
Journal of Physiology | Year: 2014

A loud acoustic stimulus (LAS) presented during movement preparation can induce an early release of the prepared action. Because loud sound has been found to have an inhibitory effect on motor cortex excitability, it is possible that the motor cortex plays little role in the early release of prepared responses. We sought to shed new light on this suggestion by probing changes in corticospinal excitability after LAS presentation during preparation for an anticipatory action. Unexpectedly, we show that the changes in corticospinal excitability after LAS presentation are not fixed. Based on the magnitude of motor-evoked potentials elicited by transcranial magnetic and electric stimulation of the motor cortex, we demonstrate that the effects of auditory stimuli on corticospinal excitability depend on the level of readiness for action: inhibition in early preparation and facilitation close to movement onset. We also show that auditory stimuli can regulate intracortical excitability by increasing intracortical facilitation and reducing short-interval intracortical inhibition. Together, these findings indicate that, at least in part, the early release of motor responses by auditory stimuli involves the motor cortex. © 2013 The Physiological Society. Source


de Rugy A.,Center for Sensorimotor Neuroscience | Marinovic W.,Center for Sensorimotor Neuroscience | Wallis G.,Center for Sensorimotor Neuroscience | Wallis G.,University of Queensland
Journal of Neurophysiology | Year: 2012

To intercept or avoid moving objects successfully, we must compensate for the sensorimotor delays associated with visual processing and motor movement. Although straightforward in the case of constant velocity motion, it is unclear how humans compensate for accelerations, as our visual system is relatively poor at detecting changes in velocity. Work on free-falling objects suggests that we are able to predict the effects of gravity, but this represents the most simple, limiting case in which acceleration is constant and motion linear. Here, we show that an internal model also predicts the effects of complex, varying accelerations when they result from lawful interactions with the environment. Participants timed their responses with the arrival of a ball rolling within a tube of various shapes. The pattern of errors indicates that participants were able to compensate for most of the effects of the ball acceleration (~85%) within a relatively short practice (~300 trials). Errors on catch trials in which the ball velocity was unexpectedly maintained constant further confirmed that participants were expecting the effect of acceleration induced by the shape of the tube. A similar effect was obtained when the visual scene was projected upside down, indicating that the mechanism of this prediction is flexible and not confined to ecologically valid interactions. These findings demonstrate that the brain is able to predict motion on the basis of prior experience of complex interactions between an object and its environment. © 2012 the American Physiological Society. Source

Discover hidden collaborations