Time filter

Source Type

Montréal, Canada

Corbalan F.,University Institute of Mental Health | Beaulieu S.,University Institute of Mental Health | Beaulieu S.,McGill University | Armony J.L.,University Institute of Mental Health | And 2 more authors.
Psychological Medicine

Background Bipolar disorder type I (BD-I) is associated with emotion dysregulation. However, experimentally controlled studies of emotion regulation (ER), particularly those examining the brain correlates of the putative deficits, are scarce and their results inconsistent. Method Nineteen euthymic BD-I patients and 17 healthy controls (HC) underwent functional magnetic resonance imaging while performing a visual ER 2 × 2 factorial task, with instruction (Look or Decrease) and valence (Negative or Neutral) as within-subject factors. Emotional ratings were collected after each picture presentation to assess regulation success. Results BD-I patients were successful at downregulating their emotions, although to a lesser degree than HC. Both groups engaged brain regions previously implicated in ER; however, unlike HC, patients engaged some of those regions, particularly the ventrolateral prefrontal cortex (VLPFC) in the Negative Look and Neutral Decrease conditions. Moreover, patients failed to show the reduced amygdala activation in the Negative Decrease condition observed in HC. Conclusion Our findings suggest that BD-I patients are able to downregulate their emotions when instructed to do so. However, they also appear to engage their ER network, particularly the VLPFC, even when not required to do so. These findings may help explain their often-reported difficulty in regulating emotions in everyday life despite their attempts to do so. © Cambridge University Press 2015. Source

Zatorre R.J.,Montreal Neurological Institute | Zatorre R.J.,Center for Research on Brain
Annals of the New York Academy of Sciences

Most people derive pleasure from music. Neuroimaging studies show that the reward system of the human brain is central to this experience. Specifically, the dorsal and ventral striatum release dopamine when listening to pleasurable music, and activity in these structures also codes the reward value of musical excerpts. Moreover, the striatum interacts with cortical mechanisms involved in perception and valuation of musical stimuli. Recent studies have begun to explore individual differences in the way that this complex system functions. Development of a questionnaire for music reward experiences has allowed the identification of separable factors associated with musical pleasure, described as music-seeking, emotion-evocation, mood regulation, sensorimotor, and social factors. Applying this questionnaire to a large sample uncovered approximately 5% of the population with low sensitivity to musical reward in the absence of generalized anhedonia or depression. Further study of this group revealed that there are individuals who respond normally both behaviorally and psychophysiologically to rewards other than music (e.g., monetary value) but do not experience pleasure from music despite normal music perception ability and preserved ability to identify intended emotions in musical passages. This specific music anhedonia bears further study, as it may shed light on the function and dysfunction of the reward system. © 2014 New York Academy of Sciences. Source

Mollaei F.,Center for Research on Brain | Mollaei F.,McGill University | Shiller D.M.,Center for Research on Brain | Shiller D.M.,Sainte Justine Research Center | And 4 more authors.
Movement Disorders

The basal ganglia are involved in establishing motor plans for a wide range of behaviors. Parkinson's disease (PD) is a manifestation of basal ganglia dysfunction associated with a deficit in sensorimotor integration and difficulty in acquiring new motor sequences, thereby affecting motor learning. Previous studies of sensorimotor integration and sensorimotor adaptation in PD have focused on limb movements using visual and force-field alterations. Here, we report the results from a sensorimotor adaptation experiment investigating the ability of PD patients to make speech motor adjustments to a constant and predictable auditory feedback manipulation. Participants produced speech while their auditory feedback was altered and maintained in a manner consistent with a change in tongue position. The degree of adaptation was associated with the severity of motor symptoms. The patients with PD exhibited adaptation to the induced sensory error; however, the degree of adaptation was reduced compared with healthy, age-matched control participants. The reduced capacity to adapt to a change in auditory feedback is consistent with reduced gain in the sensorimotor system for speech and with previous studies demonstrating limitations in the adaptation of limb movements after changes in visual feedback among patients with PD. © 2013 Movement Disorder Society. Source

Zendel B.R.,Music and Sound Research BRAMS | Zendel B.R.,Institute University Of Geriatrie Of Montrealqc | Zendel B.R.,Center for Research on Brain | Zendel B.R.,University Of Montrealqc | And 7 more authors.
Journal of Cognitive Neuroscience

Musicians have enhanced auditory processing abilities. In some studies, these abilities are paralleled by an improved understanding of speech in noisy environments, partially due to more robust encoding of speech signals in noise at the level of the brainstem. Little is known about the impact of musicianship on attention-dependent cortical activity related to lexical access during a speech-in-noise task. To address this issue, we presented musicians and nonmusicians with single words mixed with three levels of background noise, across two conditions, while monitoring electrical brain activity. In the active condition, listeners repeated the words aloud, and in the passive condition, they ignored the words and watched a silent film. When background noise was most intense, musicians repeated more words correctly compared with nonmusicians. Auditory evoked responses were attenuated and delayed with the addition of background noise. In musicians, P1 amplitude was marginally enhanced during active listening and was related to task performance in the most difficult listening condition. By comparing ERPs from the active and passive conditions, we isolated an N400 related to lexical access. The amplitude of the N400 was not influenced by the level of background noise in musicians, whereas N400 amplitude increased with the level of background noise in nonmusicians. In nonmusicians, the increase in N400 amplitude was related to a reduction in task performance. In musicians only, there was a rightward shift of the sources contributing to the N400 as the level of background noise increased. This pattern of results supports the hypothesis that encoding of speech in noise is more robust in musicians and suggests that this facilitates lexical access. Moreover, the shift in sources suggests that musicians, to a greater extent than nonmusicians, may increasingly rely on acoustic cues to understand speech in noise. © 2015 Massachusetts Institute of Technology. Source

Lehmann A.,Music and Sound Research BRAMS | Lehmann A.,University of Montreal | Lehmann A.,Center for Research on Brain | Schonwiesner M.,Music and Sound Research BRAMS | And 3 more authors.

Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequencyfollowing responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues. © 2014 Lehmann et al. Source

Discover hidden collaborations