Research Center for Innovation

Biała Podlaska, Poland

Research Center for Innovation

Biała Podlaska, Poland
SEARCH FILTERS
Time filter
Source Type

Bogut A.,Medical University of Lublin | Niedzwiadek J.,Medical University of Lublin | Koziol-Montewka M.,Medical University of Lublin | Strzelec-Nowak D.,Medical University of Lublin | And 4 more authors.
Journal of Medical Microbiology | Year: 2014

We determined the frequency of isolation of staphylococcal small-colony variants (SCVs) from 31 culture-positive patients undergoing revision of total hip prosthesis for aseptic loosening or presumed prosthetic-joint infection (PJI). We analysed auxotrophy of cultured SCVs, their antimicrobial susceptibility profiles and their biofilm-forming capacity. Eight SCV strains were cultivated from six (19%) patients. All SCVs were coagulase-negative staphylococci (CNS) with Staphylococcus epidermidis as the predominant species; there was also one Staphylococcus warneri SCV. The SCVs were auxotrophic for haemin, with one strain additionally auxotrophic for menadione. We noted the presence of two phenotypically (differences concerning antimicrobial susceptibility) and genetically distinct SCV strains in one patient, as well as the growth of two genetically related SCVs that differed in terms of their morphology and the type of auxotrophy in another. Seven out of eight SCVs were resistant to meticillin and gentamicin. In addition, antibiotic sensitivity testing revealed three multidrug-resistant SCV-normal-morphology isolate pairs. One S. epidermidis SCV harboured icaADBC genes and was found to be a proficient biofilm producer. This paper highlights the involvement of CNS SCVs in the aetiology of PJIs, including what is believed to be the first report of a S. warneri SCV. These subpopulations must be actively sought in the routine diagnosis of implant-associated infections. Moreover, in view of the phenotypic and genetic diversity of some SCV pairs, particular attention should be paid to the investigation of all types of observed colony morphologies, and isolates should be subjected to antimicrobial susceptibility testing. © 2014 SGM.


Magrys A.,Medical University of Lublin | Paluch-Oles J.,Medical University of Lublin | Bogut A.,Medical University of Lublin | Kielbus M.,Medical University of Lublin | And 2 more authors.
Journal of Microbiology | Year: 2015

Staphylococcus epidermidis is commonly involved in biomaterial-associated infections. Bacterial small colony variants (SCV) seem to be well adapted to persist intracellularly in professional phagocytes evading the host immune response. We studied the expression of PD-L1/L2 on macrophages infected with clinical isolates of S. epidermidis SCV and their parent wild type (WT) strains. The cytokine pattern which is triggered by the examined strains was also analysed. In the study, we infected macrophages with S. epidermidis WT and SCV strains. Persistence and release from macrophages were monitored via lysostaphin protection assays. Moreover, the effect of IFN-γ pre-treatment on bacterial internalisation was investigated. Expression of PD-L1/L2 molecules was analysed with the use of FACS. Inflammatory reaction was measured by IL-10, TNF-α ELISAs, and transcriptional induction of TNF-α. Our study revealed that clinical SCV isolates were able to persist and survive in macrophages for at least 3 days with a low cytotoxic effect and a reduced proinflammatory response as compared to WT strains. Bacteria upregulated PD-L1/L2 expression on macrophages as compared to non-stimulated cells. The results demonstrated that the ability of S. epidermidis SCVs to induce elevated levels of anti-inflammatory cytokine, IL-10, and reduced transcriptional induction of TNF-α, together with expression of PD-L1 on macrophages and the ability to persist intracellularly without damaging the host cell could be the key factor contributing to chronicity of SCV infections. © 2015, The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg.

Loading Research Center for Innovation collaborators
Loading Research Center for Innovation collaborators