Time filter

Source Type

Paquette B.,Université de Sherbrooke | Paquette B.,Center for Research in Radiotherapy | Therriault H.,Université de Sherbrooke | Therriault H.,Center for Research in Radiotherapy | And 8 more authors.
British Journal of Cancer | Year: 2011

Background: Recent evidences support that radiation can promote the invasion of cancer cells. As interactions between cancer cells and surrounding stromal cells can have an important role in tumour progression, we determined whether an irradiation to fibroblasts can enhance the invasiveness of breast cancer cells. The role of cyclooxygenase-2 (COX-2), an inflammatory enzyme frequently induced by radiotherapy, was investigated. Methods: Irradiated 3T3 fibroblasts were plated in the lower compartment of invasion chambers and used as chemoattractant for non-irradiated human breast cancer cell MDA-MB-231, which are oestrogen receptor negative (ER()) and the oestrogen receptor positive (ER()) MCF-7 cells. Stimulation of COX-2 expression in irradiated 3T3 cells was measured by a semi-quantitative qPCR and western blot. Capacity of the major product of COX-2, the prostaglandin E2 (PGE2), to stimulate the production of the matrix metalloproteinase-2 (MMP-2) and cancer cell invasion were assessed with a zymography gel and invasion chambers. Results: Irradiation (5 Gy) of 3T3 fibroblasts increased COX-2 expression and enhanced by 5.8-fold the invasiveness of non-irradiated MDA-MB-231 cells, while their migration was not modified. Addition of the COX-2 inhibitor NS-398 completely prevented radiation-enhancement of cancer cell invasion. Further supporting the potential role of COX-2, addition of PGE 2 has increased cancer cell invasion and release of MMP-2 from the MDA-MB-231 cells. This effect of radiation was dependant on the expression of membrane type 1 (MT1)-MMP, which is required to activate the MMP-2, but was not associated with the ER status. Although irradiated fibroblasts stimulated the invasiveness of MDA-MB-231 ER() cells, no enhancement was measured with the ER() cell line MCF-7. Conclusions: Radiation-enhancement of breast cancer cell invasion induced by irradiated 3T3 fibroblasts is not dependant on the ER status, but rather the expression of MT1-MMP. This adverse effect of radiation can be prevented by a specific COX-2 inhibitor. © 2011 Cancer Research UK.

PubMed | Center for Research in Radiotherapy and Université de Sherbrooke
Type: | Journal: International journal of nanomedicine | Year: 2016

The potential of gold nanoparticles (GNPs) as radiosensitizers for the treatment of malignant tumors has been limited by the large quantities of GNPs that must be administered and the requirement for low-energy X-ray irradiation to optimize radiosensitization. In this study, we enhance the radiosensitivity of HCT116 human colorectal cells with tiopronin-coated GNPs (Tio-GNPs) combined with a low-energy X-ray (26 keV effective energy) source, similar to the Papillon 50 clinical irradiator used for topical irradiation of rectal tumors. Sensitizer enhancement ratios of 1.48 and 1.69 were measured in vitro, when the HCT116 cells were incubated with 0.1 mg/mL and 0.25 mg/mL of Tio-GNPs, respectively. In nude mice bearing the HCT116 tumor, intra-tumoral (IT) injection of Tio-GNPs allowed a 94 times higher quantity of Tio-GNPs to accumulate than was possible by intravenous injection and facilitated a significant tumor response. The time following irradiation, for tumors growing to four times their initial tumor volume (4Td) was 54 days for the IT injection of 366.3 g of Tio-GNPs plus 10 Gy, compared to 37 days with radiation alone (

Loading Center for Research in Radiotherapy collaborators
Loading Center for Research in Radiotherapy collaborators