Center for Promotion of Clinical Investigation

Japan

Center for Promotion of Clinical Investigation

Japan
SEARCH FILTERS
Time filter
Source Type

Nishi K.,Fukuoka University | Nishi K.,University of Sfax | Luo H.,Fukuoka University | Nakabayashi K.,National Health Research Institute | And 10 more authors.
Anticancer Research | Year: 2017

Background/Aim: Alpha-kinase 2 (ALPK2), suggested to be a novel tumour-suppressor gene downregulated by oncogenic KRAS, plays a pivotal role in luminal apoptosis in normal colonic crypts. The aim of this study was to determine the association between ALPK2 germline variants and colorectal cancer. Materials and Methods: Missense single nucleotide variants in the exons of the ALPK2 gene in 2,343 consecutive autopsy cases (1,446 cases with cancer and 897 cases without cancer) were screened using HumanExome BeadChip arrays. To address the functional effect of a missense ALPK2 variant, a 3D floating cell culture was performed using HCT116-derived human colorectal cancer cells stably expressing wild-type (wt) ALPK2 (HCT116-wtALPK2) or amino acid-substituted (sub) ALPK2 (HCT116-subALPK2). Results: We identified that one of the ALPK2 germline variants, rs55674018 (p.Q1853E), was significantly associated with the presence of cancer (adjusted odds ratio(OR)=4.39; 95% confidence interval(CI)=1.31-14.78, p=0.001). The p.Q1853E variant was present in the East Asian population and located in the immunoglobulin-like domain. Notably, the basolateral polarity of actin in the surface of HCT116-wtALPK2 spheroids was more attenuated compared to that of HCT116-subALPK2 spheroids. Furthermore, luminal apoptosis and cell aggregation were promoted by wtALPK2, but not by subALPK2 in 3D culture. Conclusion: The p.Q1853E variant of ALPK2, which had been accumulating in the Japanese population, induced a metastatic phenotype by disrupting ALPK2 function.


Yamada Y.,Mie University | Yamada Y.,Japan Science and Technology Agency | Sakuma J.,Japan Science and Technology Agency | Sakuma J.,University of Tsukuba | And 21 more authors.
International Journal of Molecular Medicine | Year: 2017

In this study, we performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). EWAS for ischemic stroke was performed using 1,575 patients with this condition and 9,210 controls, and EWASs for ICH and SAH were performed using 673 patients with ICH, 265 patients with SAH and 9,158 controls. Analyses were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 41,339 or 41,332 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic or hemorrhagic stroke, respectively, was examined with Fisher's exact test. Based on Bonferroni's correction, a P-value of <1.21x10-6 was considered statistically significant. EWAS for ischemic stroke revealed that 77 SNPs were significantly associated with this condition. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension and diabetes mellitus revealed that 4 of these SNPs [rs3212335 of GABRB3 (P=0.0036; odds ratio, 1.29), rs147783135 of TMPRSS7 (P=0.0024; odds ratio, 0.37), rs2292661 of PDIA5 (P=0.0054; odds ratio, 0.35) and rs191885206 of CYP4F12 (P=0.0082; odds ratio, 2.60)] were related (P<0.01) to ischemic stroke. EWASs for ICH or SAH revealed that 48 and 12 SNPs, respectively, were significantly associated with these conditions. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension revealed that rs138533962 of STYK1 (P<1.0x10-23; odds ratio, 111.3) was significantly (P<2.60x10-4) associated with ICH and that rs117564807 of COL17A1 (P=0.0009; odds ratio, 2.23x10-8) was significantly (P<0.0010) associated with SAH. GABRB3, TMPRSS7, PDIA5 and CYP4F12 may thus be novel susceptibility loci for ischemic stroke, whereas STYK1 and COL17A1 may be such loci for ICH and SAH, respectively.

Loading Center for Promotion of Clinical Investigation collaborators
Loading Center for Promotion of Clinical Investigation collaborators