Entity

Time filter

Source Type


Chu Y.-K.,Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases | Owen R.D.,Texas Tech University | Jonsson C.B.,Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases | Jonsson C.B.,University of Louisville
Virology Journal | Year: 2011

Background: Longitudinal mark-recapture studies of rodents in two sites in the Mbaracayú Biosphere Reserve in the Interior Atlantic Forest of eastern Paraguay have revealed a complex and intriguing pattern of hantaviruses harbored by rodents in this area. Full-length sequencing and phylogenetic analyses were conducted for several rodents from Akodon montensis and Oligoryzomys fornesi. The phylogenetic relationships of these viruses were analyzed in the context of hantaviruses in South America with published S- and M-segment sequences. Findings. Phylogenetic analyses of hantaviruses identified in the Mbaracayú Biosphere Reserve in Paraguay revealed Jabora and Juquitiba viruses are harbored by Akodon montensis and Oligoryzomys fornesi, respectively. These analyses revealed that in general the constituents of the major subclade for the S- and M-segments differ for the South American hantaviruses. Further, the two major groups within subclade C for the M-segment reflect in general the lethality associated with the viruses within each group. Conclusions: Phylogenetic studies of Jabora and Juquitiba viruses and other Paraguayan viruses in the context of American hantaviruses revealed reassortment and host-switching in the evolution of South American hantaviruses. © 2011 Chu et al; licensee BioMed Central Ltd. Source


Beier J.I.,University of Louisville | Beier J.I.,Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases | Jokinen J.D.,University of Louisville | Jokinen J.D.,Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases | And 10 more authors.
PLoS ONE | Year: 2015

Viral hemorrhagic fevers (VHFs) encompass a group of diseases with cardinal symptoms of fever, hemorrhage, and shock. The liver is a critical mediator of VHF disease pathogenesis and high levels of ALT/AST transaminases in plasma correlate with poor prognosis. In fact, Lassa Fever (LF), the most prevalent VHF in Africa, was initially clinically described as hepatitis. Previous studies in non-human primate (NHP) models also correlated LF pathogenesis with a robust proliferative response in the liver. The purpose of the current study was to gain insight into the mechanism of liver injury and to determine the potential role of proliferation in LF pathogenesis. C57Bl/6J mice were infected with either the pathogenic (for NHPs) strain of lymphocytic choriomeningitis virus (LCMV, the prototypic arenavirus), LCMV-WE, or with the non-pathogenic strain, LCMV-ARM. As expected, LCMV-WE, but not ARM, caused a hepatitis-like infection. LCMV-WE also induced a robust increase in the number of actively cycling hepatocytes. Despite this increase in proliferation, there was no significant difference in liver size between LCMV-WE and LCMV-ARM, suggesting that cell cycle was incomplete. Indeed, cells appeared arrested in the G1 phase and LCMV-WE infection increased the number of hepatocytes that were simultaneously stained for proliferation and apoptosis. LCMV-WE infection also induced expression of a non-conventional virus receptor, AXL-1, from the TAM (TYRO3/AXL/MERTK) family of receptor tyrosine kinases and this expression correlated with proliferation. Taken together, these results shed new light on the mechanism of liver involvement in VHF pathogenesis. Specifically, it is hypothesized that the induction of hepatocyte proliferation contributes to expansion of the infection to parenchymal cells. Elevated levels of plasma transaminases are likely explained, at least in part, by abortive cell cycle arrest induced by the infection. These results may lead to the development of new therapies to prevent VHF progression. © 2015 Beier et al. Source

Discover hidden collaborations