Time filter

Source Type

Ritter C.,Alfred Wegener Institute for Polar and Marine Research | Neuber R.,Alfred Wegener Institute for Polar and Marine Research | Schulz A.,Alfred Wegener Institute for Polar and Marine Research | Markowicz K.M.,University of Warsaw | And 15 more authors.
Atmospheric Environment | Year: 2016

In this work multi wavelength Raman lidar data from Ny-Ålesund, Spitsbergen have been analysed for the spring 2014 Arctic haze season, as part of the iAREA campaign. Typical values and probability distributions for aerosol backscatter, extinction and depolarisation, the lidar ratio and the color ratio for 4 different altitude intervals within the troposphere are given. These quantities and their dependencies are analysed and the frequency of altitude-dependent observed aerosol events are given. A comparison with ground-based size distribution and chemical composition is performed. Hence the aim of this paper is to provide typical and statistically meaningful properties of Arctic aerosol, which may be used in climate models or to constrain the radiative forcing. We have found that the 2014 season was only moderately polluted with Arctic haze and that sea salt and sulphate were the most dominant aerosol species. Moreover the drying of an aerosol layer after cloud disintegration has been observed. Hardly any clear temporal evolution over the 4 week data set on Arctic haze is obvious with the exception of the extinction coefficient and the lidar ratio, which significantly decreased below 2 km altitude by end April. In altitudes between 2 and 5 km the haze season lasted longer and the aerosol properties were generally more homogeneous than closer to the surface. Above 5 km only few particles were found. The variability of the lidar ratio is discussed. It was found that knowledge of the aerosol's size and shape does not determine the lidar ratio. Contrary to shape and lidar ratio, there is a clear correlation between size and backscatter: larger particles show a higher backscatter coefficient. © 2016 The Authors.

Pakszys P.,Polish Academy of Sciences | Zielinski T.,Polish Academy of Sciences | Zielinski T.,Center for Polar Studies National Leading Research Center | Markowicz K.,University of Warsaw | And 9 more authors.
GeoPlanet: Earth and Planetary Sciences | Year: 2015

In this work we present the annual changes of two major, climate related aerosol optical parameters measured at three Spitsbergen locations, Ny-Alesund, Longyearbyen and Hornsund over a period between 2000 and 2012. We discuss the changes of aerosol optical depth (AOD) at 500 nm and the Ångström exponent (AE) (440-870 nm) measured with use of different types of sun photometers. For the measurement data we adopted several data quality assurance techniques and the calibration of the instruments was taken into consideration. The results obtained show that marine source has been a dominating of aerosol sources over Spitsbergen. Some years (2005, 2006, 2008 and 2011) show very high values of AOD due to strong aerosol events such as the Arctic Haze. In general the mean AOD values increase over the period of 2000 and 2012 over Spitsbergen. This may indicate the presence of larger scale of atmospheric pollution in the region. © Springer International Publishing Switzerland 2015.

Loading Center for Polar Studies National Leading Research Center collaborators
Loading Center for Polar Studies National Leading Research Center collaborators