Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2011.2.4.1-2 | Award Amount: 4.28M | Year: 2012

Multiple Myeloma (MM) is an incurable disease with rapidly growing prevalence and poor prognosis. Consequently, it is the goal of the OPTATIO consortium to seek out novel strategies for the development of novel diagnostic and therapeutic options. The MM pathogenesis involves not only genetic changes within the tumour cells but also the emergence of supportive conditions by the bone marrow microenvironment (BMM). To target the essential components of this support system, it is the goal of the project to establish preclinical in vitro and in vivo models of MM that include functionally relevant elements of the BMM. The OPTATIO consortium will therefore analyse clinical data to correlate the presence of particular MM-BMM interactions with the pathogenesis of MM, with its intrinsic therapy resistance as well as with disease relapse due to the development of acquired drug resistance. These correlative data will be validated using autologous MM-BMM co-culture assays and reverse translated into in vitro screening and in vivo models, which will be subsequently used to develop lead compounds that target myeloma cells within their microenvironment. The clinical expertise of several oncological divisions, the research experience of academic laboratories and the pharmaceutical know-how of small and medium sized enterprises as well as biotech industry joined their efforts within the OPTATIO consortium to drive this important development and to ensure translation towards clinical trials. Expected impacts of the project include establishment of better diagnostics, new drug screening approaches for MM and novel personalised therapies based on individual ex vivo phenotyping leading to reduced patient mortality. Since envisaged drug screening methods are applicable to other areas of research and development, the project results will open new markets for industry partners in the fields of drug discovery and pharmaceutical development of products and services for personalized medicine.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-05-2014 | Award Amount: 7.99M | Year: 2015

While prevention of most female specific cancers (ovarian, breast, endometrial) has not progressed substantially in recent years, significant progress has been made with cervical cancer due to accessibility of the cell of origin (cervical smear) and availability of a test for the causal agent (human papilloma virus); together these enable identification of high risk individuals and interventions to prevent infection or halt progression to invasive cancer. Our consortium has developed an exciting opportunity to utilise clinically abundant cervical cells in tandem with a multi-omics enabled (genome, epigenome, metagenome) analysis pipeline to understand an individuals risk of developing a female specific cancer and to direct a personalised screening and prevention strategy. Cervical cells currently collected within cervical cancer screening provide an ideal window into other female specific cancers because they are (i) an excellent non-invasive source of high quality DNA, (ii) provide a readout for environmental exposure, (iii) are part of the Mllerian tract and (iv) are hormone sensitive, recording (via the epigenome) various hormonal conditions over a lifetime that trigger cancer development. The FORECEE project is aligned with the novel concept of P4 Medicine (predictive, preventive, personalized, and participatory): it aims to translate the risk prediction tools output into personalised recommendations for screening and prevention of female cancers. Our consortium comprises a multi-disciplinary team of experts in clinical oncology, risk-benefit communication, omics technologies, decision analysis, health economics and public health. We will examine the effectiveness of the proposed cervical cell omics analysis method and investigate the legal, social, ethical and behavioural issues related to implementation of the risk prediction tool, through direct interaction with stakeholder groups, to ensure its rapid translation into clinical practice across Europe.

Discover hidden collaborations