Time filter

Source Type

Pishas K.I.,Hanson Institute | Pishas K.I.,Center for Personalised Cancer Medicine | Neuhaus S.J.,Center for Personalised Cancer Medicine | Neuhaus S.J.,University of Adelaide | And 19 more authors.
Cancer Research | Year: 2014

Nutlin-3a is a small-molecule antagonist of p53/MDM2 that is being explored as a treatment for sarcoma. In this study, we examined the molecular mechanisms underlying the sensitivity of sarcomas to Nutlin-3a. In an ex vivo tissue explant system, we found that TP53 pathway alterations (TP53 status, MDM2/MDM4 genomic amplification/mRNA overexpression, MDM2 SNP309, and TP53 SNP72) did not confer apoptotic or cytostatic responses in sarcoma tissue biopsies (n < 24). Unexpectedly, MDM2 status did not predict Nutlin-3a sensitivity. RNA sequencing revealed that the global transcriptomic profiles of these sarcomas provided a more robust prediction of apoptotic responses to Nutlin-3a. Expression profiling revealed a subset of TP53 target genes that were transactivated specifically in sarcomas that were highly sensitive to Nutlin-3a. Of these target genes, the GADD45A promoter region was shown to be hypermethylated in 82% of wild-type TP53 sarcomas that did not respond to Nutlin-3a, thereby providing mechanistic insight into the innate ability of sarcomas to resist apoptotic death following Nutlin-3a treatment. Collectively, our findings argue that the existing benchmark biomarker for MDM2 antagonist efficacy (MDM2 amplification) should not be used to predict outcome but rather global gene expression profiles and epigenetic status of sarcomas dictate their sensitivity to p53/MDM2 antagonists. © 2013 AACR.


Neilsen P.M.,Center for Personalised Cancer Medicine | Pehere A.D.,Center for Personalised Cancer Medicine | Pehere A.D.,University of Adelaide | Pishas K.I.,Center for Personalised Cancer Medicine | And 3 more authors.
ACS Chemical Biology | Year: 2013

The 26S proteasome has emerged over the past decade as an attractive therapeutic target in the treatment of cancers. Here, we report new tripeptide aldehydes that are highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific proteasome inhibitors demonstrated high potency and specificity for sarcoma cells, with therapeutic windows superior to those observed for benchmark proteasome inhibitors, MG132 and Bortezomib. Constraining the peptide backbone into the β-strand geometry, known to favor binding to a protease, resulted in decreased activity in vitro and reduced anticancer activity. Using these new proteasome inhibitors, we show that the presence of an intact p53 pathway significantly enhances cytotoxic activity, thus suggesting that this tumor suppressor is a critical downstream mediator of cell death following proteasomal inhibition. © 2012 American Chemical Society.

Loading Center for Personalised Cancer Medicine collaborators
Loading Center for Personalised Cancer Medicine collaborators