Time filter

Source Type

Monterey Park, CA, United States

Fujita R.,Environmental Defense Fund | Moxley J.H.,Environmental Defense Fund | DeBey H.,The New School | Van Leuvan T.,Environmental Defense Fund | And 4 more authors.
Marine Policy | Year: 2013

Ocean policies around the world increasingly emphasize the importance of maintaining resilient ocean ecosystems, communities, and economies. To maintain and restore the resilience of healthy marine ecosystems in practice, specific management objectives with metrics and a policy framework for how to apply them will be needed. Here we present a concept for doing this, based on evidence that marine ecosystems transition from desirable to less desirable states in response to a number of physical, chemical, and biological drivers. More empirical and synthesis research will be necessary to develop quantitative metrics of resilience and thresholds between ecosystem states for specific ecosystems; however, suggestions are provided here for how to manage for resilience when insufficient data and knowledge are available for quantification. A summary of thresholds for biotic and abiotic drivers of ecosystem state drawn from the literature is also provided as a guide to management. © 2012 Elsevier Ltd. Source

Kelly R.P.,University of Washington | Kelly R.P.,Center for Ocean Solutions | Cooley S.R.,Woods Hole Oceanographic Institution | Klinger T.,University of Washington
Ambio | Year: 2014

Even when environmental data quantify the risks and benefits of delayed responses to rapid anthropogenic change, institutions rarely respond promptly. We propose that narratives complementing environmental datasets can motivate responsive environmental policy. To explore this idea, we relate a case study in which a narrative of economic loss due to regionally rapid ocean acidification - an anthropogenic change - helped connect knowledge with action. We pose three hypotheses to explain why narratives might be particularly effective in linking science to environmental policy, drawing from the literature of economics, environmental policy, and cognitive psychology. It seems that yet-untold narratives may hold similar potential for strengthening the feedback between environmental data and policy and motivating regional responses to other environmental problems. © 2013 Royal Swedish Academy of Sciences. Source

Krenz C.,Oregon State University | Menge B.A.,Oregon State University | Freidenburg T.L.,MPA Monitoring Enterprise | Lubchenco J.,Oregon State University | And 3 more authors.
Journal of Experimental Marine Biology and Ecology | Year: 2011

Through bottom-up inputs and larval transport, benthic-pelagic links can have an important effect on benthic community structure. Recent work on community structure of northeast Pacific rocky shores has focused on latitudinal differences in recruitment of intertidal invertebrates as a driver of variation in community structure. Recruitment differences are associated with a transition in upwelling near Cape Blanco in southern Oregon. Here we examine the transition in recruitment along an unstudied gap on the northern California and Oregon coasts, document a latitudinal gradient in bottom-up factors, and examine if major coastal promontories associated with upwelling plumes potentially separate benthic-pelagic coupling into regions. We monitored the recruitment of intertidal invertebrates, chlorophyll a concentrations in coastal waters, and the growth rates of mussels at numerous sites along the northern California and Oregon coasts. The transition in recruitment of intertidal invertebrates from north to south changed from very high levels north of Cape Blanco, to intermediate levels between Capes Blanco and Mendocino, to very low levels south of Cape Mendocino. The specific shape of the recruitment cline varied among species. Chlorophyll a concentrations and mussel growth rates were higher north of Cape Blanco than south of Cape Blanco, indicating that bottom-up factors may also drive regional differences in rocky shore community structure. Distinctive timing between regions of recruitment and plankton pulses suggests that benthic-pelagic coupling may be somewhat independent between these regions, which are separated by major coastal promontories. Our results highlight the large variability in spatially coupled ecosystems along the northern California and Oregon coasts that drive the latitudinal gradient in rocky shore community structure in the northeast Pacific. © 2011 Elsevier B.V. Source

Mach M.E.,University of British Columbia | Mach M.E.,Center for Ocean Solutions | Levings C.D.,Northwest Atlantic Fisheries Center | Chan K.M.A.,University of British Columbia
Estuaries and Coasts | Year: 2016

Nonnative species cause economic and ecological impacts in habitats they invade, but there is little information on how they spread and become abundant. This is especially true for nonnative species in native Zostera marina eelgrass beds in coastal British Columbia, Canada, which play a vital role in estuarine ecosystems. We tested how nonnative species richness and abundance were related to both arrival vectors and environmental factors in northeast Pacific eelgrass. Using correlation tests and generalized linear models, we examined how nonnative macroinvertebrates (benthic, epifaunal, and large mobile) and some algae species were related to arrival vectors (shipping and aquaculture) and environmental factors (climate variables, human population density, and native richness and abundance). We found 12 nonnative species, 50 % with known negative impacts within eelgrass habitats. For benthic organisms, both nonnative richness and abundance were strongly correlated with shellfish aquaculture activities, and not with shipping activity. For epifaunal nonnative richness and abundance, neither vector was significantly correlated. Climate (temperature and salinity) helped explain nonnative richness but not abundance; there was no relationship of nonnative richness or abundance to native species richness and abundance or population density. Results suggest that aquaculture activities are responsible for many primary introductions of benthic nonnative species, and that temperature and salinity tolerances are responsible for post-introduction invasion success. While aquaculture and shipping vectors are becoming increasingly regulated to prevent further international spread of nonnative species, it will be important when managing nonnatives to consider secondary spread from intraregional transport through local shellfish aquaculture and shipping. © 2016 Coastal and Estuarine Research Federation Source

Hazen E.L.,Southwest Fisheries Science Center | Hazen E.L.,University of Hawaii at Manoa | Jorgensen S.,Monterey Bay Aquarium Research Institute | Rykaczewski R.R.,Princeton University | And 10 more authors.
Nature Climate Change | Year: 2013

To manage marine ecosystems proactively, it is important to identify species at risk and habitats critical for conservation. Climate change scenarios have predicted an average sea surface temperature (SST) rise of 1-6°C by 2100 (refs,), which could affect the distribution and habitat of many marine species. Here we examine top predator distribution and diversity in the light of climate change using a database of 4,300 electronic tags deployed on 23 marine species from the Tagging of Pacific Predators project, and output from a global climate model to 2100. On the basis of models of observed species distribution as a function of SST, chlorophyll a and bathymetry, we project changes in species-specific core habitat and basin-scale patterns of biodiversity. We predict up to a 35% change in core habitat for some species, significant differences in rates and patterns of habitat change across guilds, and a substantial northward displacement of biodiversity across the North Pacific. For already stressed species, increased migration times and loss of pelagic habitat could exacerbate population declines or inhibit recovery. The impending effects of climate change stress the urgency of adaptively managing ecosystems facing multiple threats. Copyright © 2013 Macmillan Publishers Limited. Source

Discover hidden collaborations