Washington, DC, United States
Washington, DC, United States

Time filter

Source Type

WASHINGTON - Transcription factor Heat Shock Factor 1 (Hsf1), which the developing brain releases to shield the vital organ from the ravages of environmental stress, actually can contribute to impairing the embryonic brain when too much Hsf1 is produced, research led by Children's National Health System scientists indicates. While the finding was made in a preclinical model, it raises questions about neural risks for human infants if their mothers drink alcohol in the first or second trimester of pregnancy. When fetuses are chronically exposed to harmful agents in utero, such as alcohol, ethanol or methyl mercury, the experience can negatively affect fetal brain development in unpredictable ways. Some fetal brains show little or no damage, while some fetal brains suffer severe damage. By looking back to the earliest moments of embryonic brain development, an international research team that includes five Children's National authors sought to explain the molecular and cellular bases for complex congenital brain disorders that can result from exposure to such harmful agents. "From a public health perspective, there is ongoing debate about whether there is any level of drinking by pregnant women that is 'safe,' " says Kazue Hashimoto-Torii, Ph.D., principal investigator in the Center for Neuroscience Research at Children's National and senior author of the paper published May 2 in Nature Communications. "We gave ethanol to pregnant preclinical models and found their offspring's neural cells experienced widely differing responses to this environmental stress. It remains unclear which precise threshold of stress exposure represents the tipping point, transforming what should be a neuroprotective response into a damaging response. Even at lower levels of alcohol exposure, however, the risk for fetal neural cells is not zero," Hashimoto-Torii adds. The cerebral cortex - the thin outer layer of the cerebrum and cerebellum that enables the brain to process information - is particularly vulnerable to disturbances in the womb, the study authors write. To fend off insult, neural cells employ a number of self-preservation strategies, including launching the protective Hsf1-Heat shock protein (Hsp) signaling pathway that is used by a wide range of organisms, from single-cell microbes to humans. Developing fetuses activate Hsf1-Hsp signaling upon exposure to environmental stressors, some to no avail. To help unravel the neurological mystery, the research sleuths used a method that allows a single molecule to fluoresce during stress exposure. They tapped specific environmental stressors, such as ethanol, hydrogen peroxide and methyl mercury - each of which are known to produce oxidative stress at defined concentrations. And, using an experimental model, they examined the Hsf1 activation pattern in the developing cerebral cortex by creating a marker, an encoding gene tagged with a type of fluorescent protein that makes it glow bright red. "Our results suggest that heterogeneous events of abnormal brain development may occur probabilistically - which explains patterns of cortical malformations that vary with each individual, even when these individuals are exposed to similar levels of environmental stressors," Hashimoto-Torii adds. Among the more striking findings, neural cells with excessively high levels of Hsf1-Hsp activation due to ethanol exposure experience disruptions to normal development, with delayed migration by immature cortical neurons. For the fetal brain to develop normally, neurons need to migrate to precise places in the brain at just the right time to enable robust neural connections. When neurons fail to arrive at their destinations or get there too late, there can be gaps in the neural network, compromising efficient and effective communication across the brain's various regions. "Even a short period of Hsf1 overactivation during prenatal development causes critical neuronal migration deficiency. The severity of deficiency depends on the duration of Hsf1 overactivation," she says. "Expression patterns vary, however, across various tissues. Stochastic response within individual cells may be largely responsible for variability seen within tissue and organs." The research team found one bright spot: Cortical neurons that stalled due to lack of the microtubule-associated molecule Dcx were able to regain their ability to migrate properly when the gene was replenished after birth. A reduction in Hsf1 activity after birth, however, did not show the same ability to trigger the "reset" button on neural development. "The finding suggests that genes other than microtubule-associated genes may play pivotal roles in ensuring that migrating neurons reach their assigned destinations in the brain at the right time - despite the added challenge of excessive Hsf1 activation," according to Hashimoto-Torii. Research at a Glance: Finding the brain cells damaged by environmental stressors


News Article | December 19, 2016
Site: www.eurekalert.org

WASHINGTON - Developing brains in newborns have a sizable pool of a certain type of immature progenitor cell that can be expanded and induced to replace cells lost to brain injury. In a pre-clinical model of premature brain injury, the sirtuin protein Sirt1 plays a crucial role in regenerating glial cells from endogenous progenitor cells after hypoxia-related brain injury suffered by preemies, a research team led by Children's National Health System reports December 19 in Nature Communications. "It is not a cure. But, in order to regenerate the white matter that is lost or damaged, the first steps are to identify endogenous cells capable of regenerating lost cells and then to expand their pool. The glial progenitor cells represent 4 to 5 percent of total brain cells," says Vittorio Gallo, Ph.D., Director of the Center for Neuroscience Research at Children's National, and senior author of the study. "It's a sizable pool, considering that the brain is made up of billions of cells. The advantage is that these progenitor cells are already there, with no requirement to slip them through the blood-brain barrier. Eventually they will differentiate into oligodendrocyte cells in white matter, mature glia, and that's exactly what we want them to do." The study team identified Sirt1 as a novel, major regulator of basal oligodendrocyte progenitor cell (OPC) proliferation and regeneration in response to hypoxia in neonatal white matter, Gallo and co-authors write. "We demonstrate that Sirt1 deacetylates and activates Cdk2, a kinase which controls OPC expansion. We also elucidate the mechanism by which Sirt1 targets other individual members of the Cdk2 signaling pathway, by regulating their deacetylation, complex formation and E2F1 release, molecular events which drive Cdk2-mediated OPC proliferation," says Li-Jin Chew, Ph.D., Research Associate Professor at Children's Center for Neuroscience Research and a study co-author. Hypoxia-induced brain injury in neonates initiates spontaneous amplification of progenitor cells but also causes a deficiency of mature oligodendrocytes. Inhibiting Sirt1 expression in vitro and in vivo showed that loss of its deacetylase activity prevents OPC proliferation in hypoxia while promoting oligodendrocyte maturation - which underscores the importance of Sirt1 activity in maintaining the delicate balance between these two processes. The tantalizing findings - the result of four years of research work in mouse models of neonatal hypoxia - hint at the prospect of lessening the severity of developmental delays experienced by the majority of preemies, Gallo adds. About 1 in 10 infants born in the United States are delivered preterm, prior to the 37th gestational week of pregnancy, according to the Centers for Disease Control and Prevention. Brain injury associated with preterm birth - including white matter injury - can have long-term cognitive and behavioral consequences, with more than 50 percent of infants who survive prematurity needing special education, behavioral intervention and pharmacological treatment, Gallo says. Time is of the essence, since Sirt1 plays a beneficial role at a certain place (white matter) and at a specific time (while the immature brain continues to develop). "We see maximal Sirt1 expression and activity within the first week after neonatal brain injury. There is a very narrow window in which to harness the stimulus that amplifies the progenitor cell population and target this particular molecule for repair," he says. Sirt1, a nicotinamide adenine dinucleotide-dependent class III histone deacetylase, is known to be involved in normal cell development, aging, inflammatory responses, energy metabolism and calorie restriction, the study team reports. Its activity can be modulated by sirtinol, an off-the-shelf drug that inhibits sirtuin proteins. The finding points to the potential for therapeutic interventions for diffuse white matter injury in neonates. Next, the research team aims to study these processes in a large animal model whose brains are structurally, anatomically and metabolically similar to the human brain. "Ideally, we want to be able to promote the timely regeneration of cells that are lost by designing strategies for interventions that synchronize these cellular events to a common and successful end," Gallo says.


News Article | December 23, 2016
Site: www.medicalnewstoday.com

Developing brains in newborns have a sizable pool of a certain type of immature progenitor cell that can be expanded and induced to replace cells lost to brain injury. In a pre-clinical model of premature brain injury, the sirtuin protein Sirt1 plays a crucial role in regenerating glial cells from endogenous progenitor cells after hypoxia-related brain injury suffered by preemies, a research team led by Children's National Health System reports in Nature Communications. "It is not a cure. But, in order to regenerate the white matter that is lost or damaged, the first steps are to identify endogenous cells capable of regenerating lost cells and then to expand their pool. The glial progenitor cells represent 4 to 5 percent of total brain cells," says Vittorio Gallo, Ph.D., Director of the Center for Neuroscience Research at Children's National, and senior author of the study. "It's a sizable pool, considering that the brain is made up of billions of cells. The advantage is that these progenitor cells are already there, with no requirement to slip them through the blood-brain barrier. Eventually they will differentiate into oligodendrocyte cells in white matter, mature glia, and that's exactly what we want them to do." The study team identified Sirt1 as a novel, major regulator of basal oligodendrocyte progenitor cell (OPC) proliferation and regeneration in response to hypoxia in neonatal white matter, Gallo and co-authors write. "We demonstrate that Sirt1 deacetylates and activates Cdk2, a kinase which controls OPC expansion. We also elucidate the mechanism by which Sirt1 targets other individual members of the Cdk2 signaling pathway, by regulating their deacetylation, complex formation and E2F1 release, molecular events which drive Cdk2-mediated OPC proliferation," says Li-Jin Chew, Ph.D., Research Associate Professor at Children's Center for Neuroscience Research and a study co-author. Hypoxia-induced brain injury in neonates initiates spontaneous amplification of progenitor cells but also causes a deficiency of mature oligodendrocytes. Inhibiting Sirt1 expression in vitro and in vivo showed that loss of its deacetylase activity prevents OPC proliferation in hypoxia while promoting oligodendrocyte maturation - which underscores the importance of Sirt1 activity in maintaining the delicate balance between these two processes. The tantalizing findings - the result of four years of research work in mouse models of neonatal hypoxia - hint at the prospect of lessening the severity of developmental delays experienced by the majority of preemies, Gallo adds. About 1 in 10 infants born in the United States are delivered preterm, prior to the 37th gestational week of pregnancy, according to the Centers for Disease Control and Prevention. Brain injury associated with preterm birth - including white matter injury - can have long-term cognitive and behavioral consequences, with more than 50 percent of infants who survive prematurity needing special education, behavioral intervention and pharmacological treatment, Gallo says. Time is of the essence, since Sirt1 plays a beneficial role at a certain place (white matter) and at a specific time (while the immature brain continues to develop). "We see maximal Sirt1 expression and activity within the first week after neonatal brain injury. There is a very narrow window in which to harness the stimulus that amplifies the progenitor cell population and target this particular molecule for repair," he says. Sirt1, a nicotinamide adenine dinucleotide-dependent class III histone deacetylase, is known to be involved in normal cell development, aging, inflammatory responses, energy metabolism and calorie restriction, the study team reports. Its activity can be modulated by sirtinol, an off-the-shelf drug that inhibits sirtuin proteins. The finding points to the potential for therapeutic interventions for diffuse white matter injury in neonates. Next, the research team aims to study these processes in a large animal model whose brains are structurally, anatomically and metabolically similar to the human brain. "Ideally, we want to be able to promote the timely regeneration of cells that are lost by designing strategies for interventions that synchronize these cellular events to a common and successful end," Gallo says. Article: Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury, Beata Jablonska, Marcin Gierdalski, Li-Jin Chew, Teresa Hawley, Mackenzie Catron, Arturo Lichauco, Juan Cabrera-Luque, Tracy Yuen, David Rowitch & Vittorio Gallo, Nature Communications, doi: 10.1038/ncomms13866, published online 19 December 2016.


Aguirre A.,Center for Neuroscience Research | Aguirre A.,State University of New York at Stony Brook | Rubio M.E.,University of Pittsburgh | Gallo V.,Center for Neuroscience Research
Nature | Year: 2010

Specialized cellular microenvironments, or niches, modulate stem cell properties, including cell number, self-renewal and fate decisions. In the adult brain, niches that maintain a source of neural stem cells (NSCs) and neural progenitor cells (NPCs) are the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus of the hippocampus. The size of the NSC population of the SVZ at any time is the result of several ongoing processes, including self-renewal, cell differentiation, and cell death. Maintaining the balance between NSCs and NPCs in the SVZ niche is critical to supply the brain with specific neural populations, both under normal conditions or after injury. A fundamental question relevant to both normal development and to cell-based repair strategies in the central nervous system is how the balance of different NSC and NPC populations is maintained in the niche. EGFR (epidermal growth factor receptor) and Notch signalling pathways have fundamental roles during development of multicellular organisms. In Drosophila and in Caenorhabditis elegans these pathways may have either cooperative or antagonistic functions7-9. In the SVZ, Notch regulates NSC identity and self-renewal, whereas EGFR specifically affects NPC proliferation and migration. This suggests that interplay of these two pathways may maintain the balance between NSC and NPC numbers. Here we show that functional cell-cell interaction between NPCs and NSCs through EGFR and Notch signalling has a crucial role in maintaining the balance between these cell populations in the SVZ. Enhanced EGFR signalling in vivo results in the expansion of the NPC pool, and reduces NSC number and self-renewal. This occurs through a non-cell-autonomous mechanism involving EGFR-mediated regulation of Notch signalling. Our findings define a novel interaction between EGFR and Notch pathways in the adult SVZ, and thus provide a mechanism for NSC and NPC pool maintenance. © 2010 Macmillan Publishers Limited. All rights reserved.


Cea-del Rio C.A.,Center for Neuroscience Research | McBain C.J.,U.S. National Institutes of Health | Pelkey K.A.,U.S. National Institutes of Health
Journal of Physiology | Year: 2012

Information processing and transfer within cortical circuits requires precise spatiotemporal coordination of excitatory principal cell activity by a relatively small population of inhibitory interneurons that exhibit remarkable anatomical, molecular and electrophysiological diversity. One subtype of interneuron, the cholecystokinin-expressing basket cell (CCKBC), is particularly well suited to integrate and impart emotional features of an animal's physiological state to principal cell entrainment through the inhibitory network as CCKBCs are highly susceptible to neuromodulation by local and subcortically generated signals commonly associated with 'mood' such as cannabinoids, serotonin and acetylcholine. Here we briefly review recent studies that have elucidated the cellular mechanisms underlying cholinergic regulation of CCKBCs. © 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society.


Triplett J.W.,University of California at Santa Cruz | Triplett J.W.,Center for Neuroscience Research | Feldheim D.A.,University of California at Santa Cruz
Seminars in Cell and Developmental Biology | Year: 2012

The axonal connections between the retina and its midbrain target, the superior colliculus (SC), is mapped topographically, such that the spatial relationships of cell bodies in the retina are maintained when terminating in the SC. Topographic map development uses a Cartesian mapping system such that each axis of the retina is mapped independently. Along the nasal-temporal mapping axis, EphAs and ephrin-As, are graded molecular cues required for topographic mapping while the dorsal-ventral axis is mapped in part via EphB and ephrin-Bs. Because both Ephs and ephrins are cell surface molecules they can signal in the forward and reverse directions. Eph/ephrin signaling leads to changes in cytoskeletal dynamics that lead to actin depolymerization and endocytosis guiding axons via attraction and repulsion. © 2011 Elsevier Ltd.


Martin B.S.,Center for Neuroscience Research | Martin B.S.,Georgetown University | Corbin J.G.,Center for Neuroscience Research | Huntsman M.M.,Aurora Pharmaceutical
Journal of Neurophysiology | Year: 2014

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability. Comorbidities of FXS such as autism are increasingly linked to imbalances in excitation and inhibition (E/I) as well as dysfunction in GABAergic transmission in a number of brain regions including the amygdala. However, the link between E/I imbalance and GABAergic transmission deficits in the FXS amygdala is poorly understood. Here we reveal that normal tonic GABAA receptor-mediated neurotransmission in principal neurons (PNs) of the basolateral amygdala (BLA) is comprised of both δ- and α5-subunit-containing GABAA receptors. Furthermore, tonic GABAergic capacity is reduced in these neurons in the Fmr1 knockout (KO) mouse model of FXS (1.5-fold total, 3-fold δ-subunit, and 2-fold α5-subunit mediated) as indicated by application of gabazine (50 μM), 4, 5, 6, 7-tetrahydroisoxazolo[5, 4-c]pyridin-3-ol (THIP, 1 μM), and α5ia (1.5 μM) in whole cell patch-clamp recordings. Moreover, α5-containing tonic GABAA receptors appear to preferentially modulate nonsomatic compartments of BLA PNs. Examination of evoked feedforward synaptic transmission in these cells surprisingly revealed no differences in overall synaptic conductance or E/I balance between wild-type (WT) and Fmr1 KO mice. Instead, we observed altered feedforward kinetics in Fmr1 KO PNs that supports a subtle yet significant decrease in E/I balance at the peak of excitatory conductance. Blockade of α5-subunit-containing GABAA receptors replicated this condition in WT PNs. Therefore, our data suggest that tonic GABAA receptor-mediated neurotransmission can modulate synaptic E/I balance and timing established by feedforward inhibition and thus may represent a therapeutic target to enhance amygdala function in FXS. © 2014 the American Physiological Society.


Liu J.S.,Center for Neuroscience Research
Current Neurology and Neuroscience Reports | Year: 2011

Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences. © Springer Science+Business Media, LLC 2011.


Mangin J.-M.,Center for Neuroscience Research | Gallo V.,Center for Neuroscience Research
ASN Neuro | Year: 2011

It has been 10 years since the seminal work of Dwight Bergles and collaborators demonstrated that NG2 (nerve/ glial antigen 2)-expressing oligodendrocyte progenitor cells (NG2 cells) receive functional glutamatergic synapses from neurons (Bergles et al., 2000), contradicting the old dogma that only neurons possess the complex and specialized molecular machinery necessary to receive synapses. While this surprising discovery may have been initially shunned as a novelty item of undefined functional significance, the study of neuron-to-NG2 cell neurotransmission has since become a very active and exciting field of research. Many laboratories have now confirmed and extended the initial discovery, showing for example that NG2 cells can also receive inhibitory GABAergic synapses (Lin and Bergles, 2004) or that neuron-to-NG2 cell synaptic transmission is a rather ubiquitous phenomenon that has been observed in all brain areas explored so far, including white matter tracts (Kukley et al., 2007; Ziskin et al., 2007; Etxeberria et al., 2010). Thus, while still being in its infancy, this field of research has already brought many surprising and interesting discoveries, and has become part of a continuously growing effort in neuroscience to re-evaluate the long underestimated role of glial cells in brain function (Barres, 2008). However, this area of research is now reaching an important milestone and its long-term significance will be defined by its ability to uncover the still elusive function of NG2 cells and their synapses in the brain, rather than by its sensational but transient successes at upsetting the old order established by neuronal physiology. To participate in the effort to facilitate such a transition, here we propose a critical review of the latest findings in the field of NG2 cell physiology - discussing how they inform us on the possible function(s) of NG2 cells in the brain - and we present some personal views on new directions the field could benefit from in order to achieve lasting significance. © 2011 The Author(s).


Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function. Mitochondrial fission needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP). Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the... manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15 nM TMRE in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.

Loading Center for Neuroscience Research collaborators
Loading Center for Neuroscience Research collaborators