Time filter

Source Type

Rochester, NY, United States

Xie R.,Center for Musculoskeletal Research | Jiang R.,University of Rochester | Chen D.,Center for Musculoskeletal Research
Genesis | Year: 2011

Axin1 is a critical negative regulator of the canonical Wnt-signaling pathway. It is a concentration-limiting factor in the β-catenin degradation complex. Axin1 null mutant mouse embryos died at embryonic day 9.5, precluding direct genetic analysis of the roles of Axin1 in many developmental and physiological processes using these mutant mice. In this study, we have generated mice carrying two directly repeated loxP sites flanking the exon 2 region of the Axin1 gene. We show that floxed-allele-carrying mice (Axin1 fx/fx) mice appear normal and fertile. Upon crossing the Axin1 fx/fx mice to the CMV-Cre transgenic mice, the loxP-flanked exon 2 region that encodes the N-terminus and the conserved regulation of G-protein signaling domain was efficiently deleted by Cre-mediated excision in vivo. Moreover, we show that mouse embryos homozygous for the Cre/loxP-mediated deletion of exon 2 of the Axin1 gene display embryonic lethality and developmental defects similar to those reported for Axin1 -/- mice. Thus, this Axin1 fx/fx mouse model will be valuable for systematic tissue-specific dissection of the roles of Axin1 in embryonic and postnatal development and diseases. © 2010 Wiley-Liss, Inc.

Shubin A.D.,University of Rochester | Felong T.J.,University of Rochester | Graunke D.,University of Rochester | Ovitt C.E.,University of Rochester | And 2 more authors.
Tissue Engineering - Part A | Year: 2015

More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell-cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications. © Copyright 2015, Mary Ann Liebert, Inc. 2015.

Park D.,Massachusetts General Hospital | Park D.,Harvard Stem Cell Institute | Park D.,Harvard University | Spencer J.A.,Massachusetts General Hospital | And 13 more authors.
Cell Stem Cell | Year: 2012

Mesenchymal stem cells (MSCs) commonly defined by in vitro functions have entered clinical application despite little definition of their function in residence. Here, we report genetic pulse-chase experiments that define osteoblastic cells as short-lived and nonreplicative, requiring replenishment from bone-marrow-derived, Mx1 + stromal cells with "MSC" features. These cells respond to tissue stress and migrate to sites of injury, supplying new osteoblasts during fracture healing. Single cell transplantation yielded progeny that both preserve progenitor function and differentiate into osteoblasts, producing new bone. They are capable of local and systemic translocation and serial transplantation. While these cells meet current definitions of MSCs in vitro, they are osteolineage restricted in vivo in growing and adult animals. Therefore, bone-marrow-derived MSCs may be a heterogeneous population with the Mx1 + population, representing a highly dynamic and stress responsive stem/progenitor cell population of fate-restricted potential that feeds the high cell replacement demands of the adult skeleton. © 2012 Elsevier Inc.

Kohn A.,Center for Musculoskeletal Research | Kohn A.,University of Rochester | Dong Y.,Center for Musculoskeletal Research | Mirando A.J.,Center for Musculoskeletal Research | And 5 more authors.
Development | Year: 2012

The Notch signaling pathway has emerged as an important regulator of endochondral bone formation. Although recent studies have examined the role of Notch in mesenchymal and chondro-osteo progenitor cell populations, there has yet to be a true examination of Notch signaling specifically within developing and committed chondrocytes, or a determination of whether cartilage and bone formation are regulated via RBPjκ-dependent or -independent Notch signaling mechanisms. To develop a complete understanding of Notch signaling during cartilage and bone development we generated and compared general Notch gain-of-function (Rosa-NICD f/+), RBPjκ-deficient (Rbpjhf /f), and RBPjκ-deficient Notch gain-of-function (Rosa-NICD f/+;Rbpjhf /f) conditional mutant mice, where activation or deletion of floxed alleles were specifically targeted to mesenchymal progenitors (Prx1Cre) or committed chondrocytes (inducible Col2Cre ERT2). These data demonstrate, for the first time, that Notch regulation of chondrocyte maturation is solely mediated via the RBPjκ-dependent pathway, and that the perichodrium or osteogenic lineage probably influences chondrocyte terminal maturation and turnover of the cartilage matrix. Our study further identifies the cartilage-specific RBPjκ-independent pathway as crucial for the proper regulation of chondrocyte proliferation, survival and columnar chondrocyte organization. Unexpectedly, the RBPjκ-independent Notch pathway was also identified as an important long-range cell non-autonomous regulator of perichondral bone formation and an important cartilage-derived signal required for coordinating chondrocyte and osteoblast differentiation during endochondral bone development. Finally, cartilage-specific RBPjκ-independent Notch signaling likely regulates Ihh responsiveness during cartilage and bone development. © 2012. Published by The Company of Biologists Ltd.

Jacobson J.A.,Center for Musculoskeletal Research | Yanoso-Scholl L.,Center for Musculoskeletal Research | Yanoso-Scholl L.,University of Rochester | Reynolds D.G.,Center for Musculoskeletal Research | And 11 more authors.
Tissue Engineering - Part A | Year: 2011

To investigate the efficacy of endocrine parathyroid hormone treatment on tissue-engineered bone regeneration, massive femoral defects in C57Bl/6 mice were reconstructed with either 100:0 or 85:15 poly-lactic acid (PLA)/beta-tricalcium phosphate (β-TCP) scaffolds (hereafter PLA or PLA/βTCP, respectively), which were fabricated with low porosity (<30%) to improve their structural rigidity. Experimental mice were treated starting at 1 week postop with daily subcutaneous injections of 40μg/kg teriparatide until sacrifice at 9 weeks, whereas control mice underwent the same procedure but were injected with sterile saline. Bone regeneration was assessed longitudinally using planar X-ray and quantitative microcomputed tomography, and the reconstructed femurs were evaluated at 9 weeks either histologically or biomechanically to determine their torsional strength and rigidity. Teriparatide treatment increased bone volume and bone mineral content significantly at 6 weeks and led to enhanced trabeculated bone callus formation that appeared to surround and integrate with the scaffold, thereby establishing union by bridging bone regeneration across the segmental defect in 30% of the reconstructed femurs, regardless of the scaffold type. However, the bone volume and mineral content in the PLA reconstructed femurs treated with teriparatide was reduced at 9 weeks to control levels, but remained significantly increased in the PLA/βTCP scaffolds. Further, bridged teriparatide-treated femurs demonstrated a prototypical brittle bone torsion behavior, and were significantly stronger and stiffer than control specimens or treated specimens that failed to form bridging bone union. Taken together, these observations suggest that intermittent, systemic parathyroid hormone treatment can enhance bone regeneration in scaffold-reconstructed femoral defects, which can be further enhanced by mineralized (βTCP) particles within the scaffold. © 2011 Mary Ann Liebert, Inc.

Discover hidden collaborations