Center for Mountain Ecosystem Studies

Kunming, China

Center for Mountain Ecosystem Studies

Kunming, China
Time filter
Source Type

Yang X.,CAS Kunming Institute of Botany | Luedeling E.,International Center for Research in Agroforestry | Chen G.,Kunming University of Science and Technology | Hyde K.D.,Mae Fah Luang University | And 6 more authors.
Fungal Diversity | Year: 2012

Climate change affects various facets of life but there is little data on its effects on wild mushroom fruiting. Yunnan Province in China is a rich source of wild mushrooms and has experienced a temperature rise over recent decades. This has resulted in warmer temperatures but the impacts of these changes on mushroom production lack documentation. We collected data on the fruiting of the highly prized matsutake mushroom (Tricholoma matsutake) in West Yunnan, China over an 11 year period from 2000 to 2010. Fruiting phenology and productivity were compared against the driving meteorological variables using Projection to Latent Structure regression. The mushrooms appeared later in the season during the observation period, which is most likely explained by rising temperatures and reduced rain during May and June. High temperature and abundant rain in August resulted in good productivity. The climate response of matsutake production results from a sequence of processes that are possibly linked with regulatory signals and resource availability. To advance the knowledge of this complex system, a holistic research approach integrating biology, ecology, genetics, physiology, and phytochemistry is needed. Our results contribute to a general model of fungal ecology, which can be used to predict the responses of fungi to global climate change. © 2012 The Mushroom Research Foundation.

Zomer R.J.,CAS Kunming Institute of Botany | Zomer R.J.,Center for Mountain Ecosystem Studies | Trabucco A.,Euro Mediterranean Center on Climate Change | Trabucco A.,University of Sassari | And 5 more authors.
Climatic Change | Year: 2014

Rapidly accelerating climate change in the Himalaya is projected to have major implications for montane species, ecosystems, and mountain farming and pastoral systems. A geospatial modeling approach based on a global environmental stratification is used to explore potential impacts of projected climate change on the spatial distribution of bioclimatic strata and ecoregions within the transboundary Kailash Sacred Landscape (KSL) of China, India and Nepal. Twenty-eight strata, comprising seven bioclimatic zones, were aggregated to develop an ecoregional classification of 12 ecoregions (generally defined by their potential dominant vegetation type), based upon vegetation and landcover characteristics. Projected climate change impacts were modeled by reconstructing the stratification based upon an ensemble of 19 Earth System Models (CIMP5) across four Representative Concentration Pathways (RCP) emission scenarios (i.e. 63 impact simulations), and identifying the change in spatial distribution of bioclimatic zones and ecoregions. Large and substantial shifts in bioclimatic conditions can be expected throughout the KSL area by the year 2050, within all bioclimatic zones and ecoregions. Over 76 % of the total area may shift to a different stratum, 55 % to a different bioclimatic zone, and 36.6 % to a different ecoregion. Potential impacts include upward shift in mean elevation of bioclimatic zones (357 m) and ecoregions (371 m), decreases in area of the highest elevation zones and ecoregions, large expansion of the lower tropical and sub-tropical zones and ecoregions, and the disappearance of several strata representing unique bioclimatic conditions within the KSL, with potentially high levels of biotic perturbance by 2050, and a high likelihood of major consequences for biodiversity, ecosystems, ecosystem services, conservation efforts and sustainable development policies in the region. © 2014 Springer Science+Business Media Dordrecht.

Zomer R.J.,CAS Kunming Institute of Botany | Zomer R.J.,Center for Mountain Ecosystem Studies | Xu J.,CAS Kunming Institute of Botany | Xu J.,Center for Mountain Ecosystem Studies | And 4 more authors.
Biological Conservation | Year: 2015

Climate change is projected to impact on biodiversity conservation and the effectiveness of the existing protected area network in biologically rich Yunnan Province of southwestern China. A statistically derived bioclimatic stratification is used to analyze projected bioclimatic conditions across Yunnan by the year 2050. The multi-model approach is based on an ensemble of CIMP5 Earth System Models, downscaled to a set of 1km2 resolution climate projections (n=63), covering four representative concentration pathways (RCP). Nine bioclimatic zones, composed of 33 strata, are currently found within Yunnan. By 2050, the mean elevation of these zones is projected to shift upwards by an average of 269m, with large increases in area of the warmer zones, and decreases in the colder, higher elevation zones. Temperate and alpine areas of high biodiversity value are at risk. Displacement in the geographic distribution of bioclimatic conditions is likely to have substantial impact across all bioclimatic zones, vegetation types, and habitats currently found in Yunnan. On average, across all RCPs, 45% of the total combined area of the protected area network will shift to a completely different zone, with 83% shifting to a different strata. The great majority of protected area will experience substantially changed, spatially shifted, and novel bioclimatic conditions by 2050. The spatial displacement and upwards shifting of bioclimatic conditions indicates a prolonged period of significant ecological perturbation, which will have a major impact upon the conservation effectiveness of the established protected area network, and other conservation efforts across Yunnan. © 2015 Elsevier Ltd.

Zomer R.J.,CAS Kunming Institute of Botany | Zomer R.J.,Center for Mountain Ecosystem Studies | Trabucco A.,Euro Mediterranean Center on Climate Change | Trabucco A.,Catholic University of Leuven | And 11 more authors.
Biological Conservation | Year: 2014

An analysis and multi-model approach, based on a statistically derived Global Environmental Stratification (GEnS) and using a downscaled ensemble (n= 63) of CIMP5 Earth System Models applied across four representative concentration pathways (RCP), has been used to project the impact of climate change on spatial distribution of bioclimatic zones and ecosystems within the biodiverse rich Xishuangbanna Prefecture, Yunnan Province, by the year 2050. Four bioclimatic zones and 9 strata were identified, overlaid with protected areas, and associated with on-going landuse change, i.e. a rapid increase in rubber plantation from 8% to 22% of total area between 2002 and 2010. Significant changes in the areal extent and distribution of all zones and strata are projected, with an averaged mean annual temperature increase ranging from 1.6. °C to 2.4. °C. By 2050, there are significant geographical shifts in all identified strata, with an average upward shift of 309. m of elevation for all strata. On average, more than 75% of Xishuangbanna is predicted to shift to a different zone, with 96% shifting to a different stratum. The area conducive to rubber plantations, currently limited by climatic conditions, expands to nearly 75% of the total area. Climatic change potentially removes the bioclimatic barriers to further expansion of rubber plantations within the area and increases pressure on remaining biodiversity both within and outside of protected areas. The analysis provides the basis for understanding potential impacts of changing bioclimatic conditions on managed and unmanaged ecosystems and landuse change trends, within the context of ongoing rapid change and agricultural expansion in the area. Current efforts to conserve forests, biodiversity and traditional landuse systems require an improved understanding of both the projected climatic changes and the responses of biodiversity and traditional agricultural systems to changing conditions. © 2013 Elsevier Ltd.

Loading Center for Mountain Ecosystem Studies collaborators
Loading Center for Mountain Ecosystem Studies collaborators