Entity

Time filter

Source Type

Utrecht, Netherlands

Ibanez-Justicia A.,Center for Monitoring of Vectors | Cianci D.,University Utrecht
Parasites and Vectors | Year: 2015

Background: Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans. This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is one of the most frequently observed species in the Netherlands. Information on the distribution of this species is essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An. plumbeus in the Netherlands. Methods: Random forest models were used to link the occurrence and the abundance of An. plumbeus with environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a cross-sectional study design in the Netherlands, from April to October 2010-2013. The environmental data were obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and mean squared error for the abundance model) were used to evaluate the models performance. The models were externally validated. Results: The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was 0.73 and the error in the validation was 0.29; the mean squared error value was 0.12. Conclusions: The areas identified by the model as suitable and with high abundance of An. plumbeus, are consistent with the areas from which nuisance was reported. Our results can be helpful in the assessment of vector-borne disease risk. © 2015 Ibañez-Justicia and Cianci; licensee BioMed Central. Source


Ibanez-Justicia A.,Center for Monitoring of Vectors | Cianci D.,University Utrecht
Parasites and Vectors | Year: 2015

Background: Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans. This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is one of the most frequently observed species in the Netherlands. Information on the distribution of this species is essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An. plumbeus in the Netherlands. Methods: Random forest models were used to link the occurrence and the abundance of An. plumbeus with environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a cross-sectional study design in the Netherlands, from April to October 2010-2013. The environmental data were obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and mean squared error for the abundance model) were used to evaluate the models performance. The models were externally validated. Results: The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was 0.73 and the error in the validation was 0.29; the mean squared error value was 0.12. Conclusions: The areas identified by the model as suitable and with high abundance of An. plumbeus, are consistent with the areas from which nuisance was reported. Our results can be helpful in the assessment of vector-borne disease risk. © 2015 Ibañez-Justicia and Cianci; licensee BioMed Central. Source


Koenraadt C.J.M.,Wageningen University | Balenghien T.,CIRAD - Agricultural Research for Development | Balenghien T.,French National Institute for Agricultural Research | Carpenter S.,The Pirbright Institute | And 17 more authors.
BMC Veterinary Research | Year: 2014

In the past decade, two pathogens transmitted by Culicoides biting midges (Diptera: Ceratopogonidae), bluetongue virus and Schmallenberg virus, have caused serious economic losses to the European livestock industry, most notably affecting sheep and cattle. These outbreaks of arboviral disease have highlighted large knowledge gaps on the biology and ecology of indigenous Culicoides species. With these research gaps in mind, and as a means of assessing what potential disease outbreaks to expect in the future, an international workshop was held in May 2013 at Wageningen University, The Netherlands. It brought together research groups from Belgium, France, Germany, Spain, Switzerland, United Kingdom and The Netherlands, with diverse backgrounds in vector ecology, epidemiology, entomology, virology, animal health, modelling, and genetics. Here, we report on the key findings of this workshop. © 2014 Koenraadt et al.; licensee BioMed Central Ltd. Source


Vogels C.B.F.,Wageningen University | Van De Peppel L.J.J.,Wageningen University | Van Vliet A.J.H.,Wageningen University | Westenberg M.,Dutch National Plant Protection Organization | And 5 more authors.
Vector-Borne and Zoonotic Diseases | Year: 2015

Culex (Cx.) pipiens mosquitoes are important vectors of West Nile virus (WNV). In Europe, the species Cx. pipiens consists of two biotypes, pipiens and molestus, which are morphologically identical, but differ in behavior. Typical behavior of the molestus biotype is the ability to remain active during winter, whereas the pipiens biotype enters diapause. The current paradigm is that the two biotypes occur sympatrically in southern Europe, but occur in isolated above- and belowground populations in northern Europe. In northern Europe, hybridization between biotypes is considered to be low because of the barrier that exists between typical habitats. Data on the occurrence of the biotypes and hybrids in northern Europe, however, are scarce, because identification to the level of biotype is often not performed. Our objective was to clarify the distribution of the Cx. pipiens biotypes and to determine hybridization rates in The Netherlands. Cx. pipiens mosquitoes were collected using three different approaches. First, traps were deployed randomly throughout The Netherlands during the summers of 2011 and 2012 (active surveillance). Second, using a web-based reporting platform and media campaign, Dutch citizens were asked to send dead mosquitoes to our laboratory during the winter and summer of 2014 (passive surveillance). Third, larvae and adults were collected during the summer of 2014 from aboveground locations in Amsterdam to identify molestus larval habitats. Real-time PCR was used for identification to the level of biotype. We found that biotype molestus and hybrids were feeding indoors during winter and summer in The Netherlands and that hybridization rates ranged between 6% and 15%. Larval habitats of biotype molestus were found to occur aboveground. The high percentage of hybridization has implications for assessing the risk of WNV transmission, because hybrids are thought to have ideal characteristics for bridging WNV between birds and humans. © Mary Ann Liebert, Inc. 2015. Source


Cianci D.,University Utrecht | Hartemink N.,University Utrecht | Ibanez-Justicia A.,Center for Monitoring of Vectors
International Journal of Health Geographics | Year: 2015

Background: Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species distribution modelling techniques, and to compare the results produced with the different techniques. Methods: Three different modelling techniques, i.e., non-linear discriminant analysis, random forest and generalised linear model, were used to investigate the environmental suitability in the Netherlands for three indigenous mosquito species (Culiseta annulata, Anopheles claviger and Ochlerotatus punctor). Results obtained with the three statistical models were compared with regard to: (i) environmental suitability maps, (ii) environmental variables associated with occurrence, (iii) model evaluation. Results: The models indicated that precipitation, temperature and population density were associated with the occurrence of Cs. annulata and An. claviger, whereas land surface temperature and vegetation indices were associated with the presence of Oc. punctor. The maps produced with the three different modelling techniques showed consistent spatial patterns for each species, but differences in the ranges of the predictions. Non-linear discriminant analysis had lower predictions than other methods. The model with the best classification skills for all the species was the random forest model, with specificity values ranging from 0.89 to 0.91, and sensitivity values ranging from 0.64 to 0.95. Conclusions: We mapped the environmental suitability for three mosquito species with three different modelling techniques. For each species, the maps showed consistent spatial patterns, but the level of predicted environmental suitability differed; NLDA gave lower predicted probabilities of presence than the other two methods. The variables selected as important in the models were in agreement with the existing knowledge about these species. All model predictions had a satisfactory to excellent accuracy; best accuracy was obtained with random forest. The insights obtained can be used to gain more knowledge on vector and non-vector mosquito species. The output of this type of distribution modelling methods can, for example, be used as input for epidemiological models of vector-borne diseases. © 2015 Cianci et al. Source

Discover hidden collaborations