Center for Molecular Neurobiology Hamburg

Hamburg, Germany

Center for Molecular Neurobiology Hamburg

Hamburg, Germany

Time filter

Source Type

Perez-Alvarez A.,Instituto Cajal | Perez-Alvarez A.,Center for Molecular Neurobiology Hamburg | Araque A.,Instituto Cajal
Current Drug Targets | Year: 2013

Astrocytes, classically considered as supportive cells for neurons without a direct role in brain information processing, are emerging as relevant elements in brain physiology through their ability to regulate neuronal activity and synaptic transmission and plasticity. In relation to the key role of astrocyte-neuron interactions in synaptic physiology, accumulating evidence suggests that dysfunctions of neuron-astrocyte signaling may be linked to the pathology of various neurological and neurodegenerative diseases. In this article, we summarize the evidence supporting the importance of astrocyte-neuron communication in synaptic physiology, which have led to reveal astrocytes as integral elements of synaptic function. We also discuss how this novel view of astrocytic functions on brain physiology is prompting us to reconsider the possible astrocytic roles in brain diseases, and specifically in depression. © 2013 Bentham Science Publishers.


PubMed | Universitatsklinikum Hamburg Eppendorf and Center for Molecular Neurobiology Hamburg
Type: Journal Article | Journal: Bioscience reports | Year: 2014

In colon enterocytes and in well-differentiated colon cancer CaCo-2 cells, InsP6 (inositol hexakisphosphate) inhibits iron uptake by forming extracellular insoluble iron/InsP6 complexes. In this study, we confirmed that CaCo-2 cells are not able to take up iron/InsP6 but, interestingly, found that the cells are able to internalize metal-free and Cr3+-bound InsP6. Thus, the inability of CaCo-2 cells to take up iron/InsP6 complexes seems to be due to the iron-bound state of InsP6. Since recently we demonstrated that the highly malignant bronchial carcinoma H1299 cells internalize and process InsP6, we examined whether these cells may be able to take up iron/InsP6 complexes. Indeed, we found that InsP6 dose-dependently increased uptake of iron and demonstrated that in the iron-bound state InsP6 is more effectively internalized than in the metal-free or Cr3+-bound state, indicating that H1299 cells preferentially take up iron/InsP6 complexes. Electron microscope and cell fraction assays indicate that after uptake H1299 cells mainly stored InsP6/iron in lysosomes as large aggregates, of which about 10% have been released to the cytosol. However, this InsP6-mediated iron transport had no significant effects on cell viability. This result together with our finding that the well-differentiated CaCo-2 cells did not, but the malignant H1299 cells preferentially took up iron/InsP6, may offer the possibility to selectively transport cytotoxic substances into tumour cells.


PubMed | Friedrich Miescher Institute for Biomedical Research, University of Basel and Center for Molecular Neurobiology Hamburg
Type: Comparative Study | Journal: Medical image analysis | Year: 2014

Dendritic spines may be tiny in volume, but are of major importance for neuroscience. They are the main receivers for excitatory synaptic connections, and their constant changes in number and in shape reflect the dynamic connectivity of the brain. Two-photon microscopy allows following the fate of individual spines in brain slice preparations and in live animals. The diffraction-limited and non-isotropic resolution of this technique, however, makes detection of such tiny structures rather challenging, especially along the optical axis (z-direction). Here we present a novel spine detection algorithm based on a statistical dendrite intensity model and a corresponding spine probability model. To quantify the fidelity of spine detection, we generated correlative datasets: Following two-photon imaging of live pyramidal cell dendrites, we used serial block-face scanning electron microscopy (SBEM) to reconstruct dendritic ultrastructure in 3D. Statistical models were trained on synthetic fluorescence images generated from SBEM datasets via point spread function (PSF) convolution. After the training period, we tested automatic spine detection on real two-photon datasets and compared the result to ground truth (correlative SBEM data). The performance of our algorithm allowed tracking changes in spine volume automatically over several hours. Using a second fluorescent protein targeted to the endoplasmic reticulum, we could analyze the motion of this organelle inside individual spines. Furthermore, we show that it is possible to distinguish activated spines from non-stimulated neighbors by detection of fluorescently labeled presynaptic vesicle clusters. These examples illustrate how automatic segmentation in 5D (x, y, z, t, ) allows us to investigate brain dynamics at the level of individual synaptic connections.


Guzman S.J.,AM Technology | Schlogl A.,AM Technology | Frotscher M.,Center for Molecular Neurobiology Hamburg | Jonas P.,AM Technology
Science | Year: 2016

The hippocampal CA3 region plays a key role in learning and memory. Recurrent CA3-CA3 synapses are thought to be the subcellular substrate of pattern completion. However, the synaptic mechanisms of this network computation remain enigmatic. To investigate these mechanisms, we combined functional connectivity analysis with network modeling. Simultaneous recording fromup to eight CA3 pyramidal neurons revealed that connectivity was sparse, spatially uniform, and highly enriched in disynaptic motifs (reciprocal, convergence, divergence, and chain motifs). Unitary connections were composed of one or two synaptic contacts, suggesting efficient use of postsynaptic space. Real-sizemodeling indicated that CA3 networks with sparse connectivity, disynaptic motifs, and single-contact connections robustly generated pattern completion. Thus, macro- and microconnectivity contribute to efficient memory storage and retrieval in hippocampal networks. Copyright © 2016 by the American Association for the Advancement of Science; all rights reserved.


Rudenko A.,Massachusetts Institute of Technology | Seo J.,Massachusetts Institute of Technology | Hu J.,Massachusetts Institute of Technology | Su S.C.,Massachusetts Institute of Technology | And 8 more authors.
Journal of Neuroscience | Year: 2015

Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre; fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia. © 2015 the authors.


Loktionov E.Y.,Moscow State Technical University | Mikhaylova M.G.,Center for Molecular Neurobiology Hamburg | Sitnikov D.S.,RAS Joint Institute for High Temperatures
Instruments and Experimental Techniques | Year: 2016

A calcium cell signaling system is one of the first, which were formed in the course of evolution of systems. The understanding of calcium binding–uncaging dynamics is crucial in studies of corresponding intracellular processes. By now, a great number of calcium-dependent processes have been investigated. However, works that fully consider these processes are absent. This is specified in many respects by the instrumental abilities. In this work, requirements for the experimental setup intended for comprehensive studies of calcium interaction dynamics are briefly formulated, its block diagram is described, and the results of test experiments are presented. © 2016, Pleiades Publishing, Inc.


PubMed | Tongji University, University of Hamburg and Center for Molecular Neurobiology Hamburg
Type: Journal Article | Journal: The American journal of Chinese medicine | Year: 2016

The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinsons disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinsons disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinsons disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinsons disease.


Sotoud H.,University of Hamburg | Borgmeyer U.,Center for Molecular Neurobiology Hamburg | Schulze C.,Center for Molecular Neurobiology Hamburg | El-Armouche A.,TU Dresden | Eschenhagen T.,University of Hamburg
Naunyn-Schmiedeberg's Archives of Pharmacology | Year: 2015

Phosphatase inhibitor-1 (I-1) inhibits the catalytic subunit of protein phosphatase type 1 (PP1c) in its protein kinase A (PKA)-phosphorylated form (I-1P). It thereby amplifies PKA signaling, which, in the heart, mediates both beneficial (acute) and adverse (chronic) effects of catecholamines. Genetic deletion of I-1 was associated with protection against catecholamine toxicity, making the PP1c-I-1P complex a potential therapeutic target for chronic heart disease. Here, we sought to define targetable interaction sites of I-1 and PP1c, concentrating on the N-terminal domain of I-1 which includes the PP1c binding motif (9KIQF12) as well as a poly-Arg stretch. Substitution of 9KIQ11 residues for analogous amino acids, 9RLN11, resulted in doubling of the IC50 values, deletion of 9KIQF12 prevented I-1 PKA-dependent phosphorylation and thus activation. Mutation of the Arg residues preceding the PKA phosphorylation site (Thr35) to Ala (R/A30-33) abolished I-1 phosphorylation and its binding to and inhibition of PP1c. A series of synthetic peptides (4-11 residues) indicated that the KIQF motif as well as the surrounding anchoring residues was essential for interfering with the inhibitory effect of I-1P on PP1c, whereas the four Arg residues were not. Unexpectedly, the most effective nonapeptide (SPRKIQFTV) also antagonized the inhibitory effect of the non-conditional PP1 inhibitor-2 with similar affinity. Incubation of neonatal rat cardiac myocytes with a poly-Arg-modified SPRKIQFTV (10 μM) reduced catecholamine-induced phosphorylation of phospholamban, a well-known PKA downstream target sensitive to PP1c. Our data reiterate the importance of the KIQF motif and provide a tool for antagonizing I-1 inhibitory effects on PP1c, i.e., activating PP1 in vivo. © 2014 Springer-Verlag Berlin Heidelberg.


PubMed | University of Hamburg and Center for Molecular Neurobiology Hamburg
Type: Journal Article | Journal: Cellular signalling | Year: 2015

Long-lasting synaptic plasticity is often accompanied by morphological changes as well as formation and/or loss of dendritic spines. Since the spine cytoskeleton mainly consists of actin filaments, morphological changes are primarily controlled by actin binding proteins (ABPs). Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) is a neuron-specific, actin bundling protein concentrated at dendritic spines. Here, we demonstrate that ITPKA depletion in mice increases the number of hippocampal spine-synapses while reducing average spine length. By employing actin to ABP ratios similar to those occurring at post synaptic densities, in addition to cross-linking actin filaments, ITPKA strongly inhibits Arp2/3-complex induced actin filament branching by displacing the complex from F-actin. In summary, our data show that in vivo ITPKA negatively regulates formation and/or maintenance of synaptic contacts in the mammalian brain. On the molecular level this effect appears to result from the ITPKA-mediated inhibition of Arp2/3-complex F-actin branching activity.


Yang N.-Y.,Sanford Burnham Institute for Medical Research | Fernandez C.,Sanford Burnham Institute for Medical Research | Richter M.,Sanford Burnham Institute for Medical Research | Richter M.,Center for Molecular Neurobiology Hamburg | And 5 more authors.
Cellular Signalling | Year: 2011

Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways. © 2010 Elsevier Inc.

Loading Center for Molecular Neurobiology Hamburg collaborators
Loading Center for Molecular Neurobiology Hamburg collaborators