Entity

Time filter

Source Type


Talbot J.J.,University of California at Santa Barbara | Song X.,University of Toronto | Wang X.,Mayo Medical School | Rinschen M.M.,Center for Molecular Medicine Cologne | And 7 more authors.
Journal of the American Society of Nephrology | Year: 2014

Polycystin-1 (PC1) mutations result in proliferative renal cyst growth and progression to renal failure in autosomal dominant polycystic kidney disease (ADPKD). The transcription factor STAT3 (signal transducer and activator of transcription 3) was shown to be activated in cyst-lining cells in ADPKD and PKD mouse models and may drive renal cyst growth, but the mechanisms leading to persistent STAT3 activation are unknown. A proteolytic fragment of PC1 corresponding to the cytoplasmic tail, PC1-p30, is overexpressed in ADPKD. Here, we showthat PC1-p30 interactswith the nonreceptor tyrosine kinase Src, resulting in Srcdependent activation of STAT3 by tyrosine phosphorylation. The PC1-p30-mediated activation of Src/ STAT3 was independent of JAK family kinases and insensitive to the STAT3 inhibitor suppressor of cytokine signaling 3. Signaling by the EGF receptor (EGFR) or cAMP amplified the activation of Src/STAT3 by PC1-p30. Expression of PC1-p30 changed the cellular response to cAMP signaling. In the absence of PC1-p30, cAMP dampened EGFR- or IL-6-dependent activation of STAT3; in the presence of PC1-p30, cAMP amplified Src-dependent activation of STAT3. In the polycystic kidney (PCK) ratmodel, activation of STAT3 in renal cystic cells depended on vasopressin receptor 2 (V2R) signaling, which increased cAMP levels. Genetic inhibition of vasopressin expression or treatment with a pharmacologic V2R inhibitor strongly suppressed STAT3 activation and reduced renal cyst growth. These results suggest that PC1, via its cleaved cytoplasmic tail, integrates signaling inputs from EGFR and cAMP< resulting in Src-dependent activation of STAT3 and a proliferative response. Copyright © 2014 by the American Society of Nephrology. Source


Hornig-Do H.-T.,University of Cologne | Tatsuta T.,University of Cologne | Buckermann A.,University of Cologne | Bust M.,University of Cologne | And 6 more authors.
EMBO Journal | Year: 2012

Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. © 2012 European Molecular Biology Organization | All Rights Reserved. Source


Fres J.M.,Institute for Genetics | Muller S.,Center for Molecular Medicine Cologne | Praefcke G.J.K.,Institute for Genetics
Journal of Lipid Research | Year: 2010

Over a hundred proteins in eukaryotic cells carry a C-terminal CaaX box sequence, which targets them for posttranslational isoprenylation of the cysteine residue. This modification, catalyzed by either farnesyl or geranylgeranyl transferase, converts them into peripheral membrane proteins. Isoprenylation is usually followed by proteolytic cleavage of the aaX tripeptide and methylation of the carboxyl group of the newly exposed isoprenylcysteine. The C-terminal modification regulates the cellular localization and biological activity of isoprenylated proteins. We have established a strategy to produce and purify recombinant farnesylated guanylate-binding protein 1 (hGBP1), a dynamin-related large GTPase. Our system is based on the coexpression of hGBP1 with the two subunits of human farnesyltransferase in Escherichia coli and a chromatographic separation of farnesylated and unmodified protein.jlr Farnesylated hGBP1 displays altered GTPase activity and is able to interact with liposomes in the activated state. Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc. Source


Brinkmann K.,Center for Molecular Medicine Cologne | Brinkmann K.,University of Cologne | Kashkar H.,Center for Molecular Medicine Cologne | Kashkar H.,University of Cologne
Cell Death and Disease | Year: 2014

Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues. © 2014 Macmillan Publishers Limited All rights reserved. Source


Noetel A.,University of Cologne | Elfimova N.,University of Cologne | Altmuller J.,University of Cologne | Becker C.,University of Cologne | And 9 more authors.
Journal of Hepatology | Year: 2013

Background & Aims: After myofibroblastic transdifferentiation, hepatic stellate cells (HSC), mainly involved in liver fibrosis by extracellular matrix production, exhibit an altered growth factor profile including increased expression of neuronal mediators. Here, we analyzed putative targets of neuronal microRNAs miR-9, miR-125b, and miR-128 by deep sequencing of the transcript population, interacting with the miRNA/Argonaute 2 (Ago2) complex in myofibroblastic HSC. Methods: MicroRNA expression was quantified by real-time PCR in primary HSC, isolated from the rat or human liver. Myofibroblastic HSC were transfected either with mimics or inhibitors of miR-9, miR-125b, and miR-128. RNA from immunoprecipitated Ago2-miRNA/transcript complexes was purified and used for next generation sequencing. Additionally, gene expression was investigated in quiescent and activated primary HSC, treated with the miR-128 mimic or inhibitor, by microarray analysis. Results: During myofibroblastic transdifferentiation of HSC, miR-9, miR-125b, and miR-128 expression was markedly increased. Transcriptome analysis of Ago2 bound mRNA by deep sequencing identified a broad spectrum of transcripts that interact with neuronal miRNAs in myofibroblastic HSC. In particular, in HSC overexpressing miR-128, many members of the chemokine family were bound to the Ago2 repression complex. Furthermore, a comprehensive profiling of gene expression demonstrates the high impact of neuronal miRNAs on the chemokine network. Conclusions: Ago2 immunoprecipitation followed by deep sequencing is a useful tool to identify novel miRNA targets. Upregulation of neuronal miR-9, miR-125b, and miR-128 during myofibroblastic transition and the identified interaction with a wide range of chemokines and chemokine receptors suggest a prominent role of neuronal miRNAs in the inflammatory response of HSC during fibrosis. © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. Source

Discover hidden collaborations