Time filter

Source Type

Miloslavina A.,Center for Molecular Biomedicine | Ebert C.,Leibniz Institute for Age Research | Tietze D.,Leibniz Institute for Age Research | Ohlenschlager O.,TU Darmstadt | And 3 more authors.
Peptides | Year: 2010

The venom of marine cone snails contains a variety of conformationally constrained peptides utilized by the animal to capture prey. Besides numerous conotoxins, which are characterized by complex disulfide patterns, other peptides with only a single disulfide bridge were isolated from different conus species. Here, we report the synthesis, structure elucidation and biological evaluation of the novel C-terminally amidated decapeptide CCAP-vil, PFc[CNSFGC]YN-NH2, from Conus villepinii. The linear precursor peptide was generated by standard solid phase synthesis. Oxidation of the cysteine residues to yield the disulfide-bridged peptide was investigated under different conditions, including several ionic liquids (ILs) as new biocompatible reaction media. Among the examined ILs, 1-ethyl-3-methylimidazolium tosylate ([C2mim][OTs]) was most efficient for CCAP-vil oxidative folding, since oxidation occurred without any byproduct formation. The structure of CCAP-vil was determined by NMR methods in aqueous solution and revealed a loop structure adopting a type(I) β-turn between residues 4-7 imposed by the flanking disulfide bridge. The amino acid side chains of Pro1, Phe2, Phe6 and Tyr9 point in three directions away from the cyclic core into the solvent creating a rather hydrophobic surface of the molecule. Based on sequence homology to cardioactive peptides (CAPs) from gastropods and arthropods, such as PFc[CNAFTGC]-NH2 (CCAP), the influence of CCAP-vil on heart rate using zebrafish embryos was investigated. CCAP-vil reduced the heart rate immediately upon injection into the heart as well as upon indirect application indicating an opposite effect to the cardioaccelerating CCAP. © 2010 Elsevier Inc. All rights reserved.

Galler K.,University Hospital Jena | Junker K.,University Hospital Jena | Franz M.,University Hospital of Jena | Hentschel J.,University Hospital Jena | And 10 more authors.
Histochemistry and Cell Biology | Year: 2012

The study was aimed at determining the vascular expression of oncofetal fibronectin (oncfFn) and tenascin-C (oncfTn-C) isoforms in renal cell carcinoma (RCC) and its metastases which are well-known targets for antibody-based pharmacodelivery. Furthermore, the influence of tumour cells on endothelial mRNA expression of these molecules was investigated. Evaluation of vascular ED-A + and ED-B + Fn as well as A1 + and C + Tn-C was performed after immunofluorescence double and triple staining using human recombinant antibodies on clear cell, papillary and chromophobe primary RCC and metastases. The influence of hypoxic RCC-conditioned medium on oncfFn and oncfTn-C mRNA expression was examined in human umbilical vein endothelial cells (HUVEC) by real time RT-PCR. There are RCC subtype specific expression profiles of vascular oncfFn and oncfTn-C and corresponding patterns when comparing primary tumours and metastases. Within one tumour, there are different vessel populations with regard to the incorporation of oncfTn-C and oncfFn into the vessel wall. In vitro tumour-derived soluble mediators induce an up regulation of oncfTn-C and oncfFn mRNA in HUVEC which can be blocked by Avastin ®. Vascular expression of oncFn and oncTn-C variants depends on RCC subtype and may reflect an individual tumour stroma interaction or different stages of vessel development. Therefore, oncFn or oncTn-C variants can be suggested as molecular targets for individualized antibody based therapy strategies in RCC. Tumour-derived VEGF could be shown to regulate target expression. © 2011 Springer-Verlag.

Tuccinardi T.,University of Pisa | Granchi C.,University of Pisa | Rizzolio F.,Center for Molecular Biomedicine | Caligiuri I.,Center for Molecular Biomedicine | And 5 more authors.
Bioorganic and Medicinal Chemistry | Year: 2014

Monoacylglycerol lipase is a serine hydrolase that play a major role in the degradation of 2-arachidonoylglycerol, an endocannabinoid neurotransmitter implicated in several physiological processes. Recent studies have shown the possible role of MAGL inhibitors as anti-inflammatory, anti-nociceptive and anti-cancer agents. The use of irreversible MAGL inhibitors determined an unwanted chronic MAGL inactivation, which acquires a functional antagonism function of the endocannabinoid system. However, the application of reversible MAGL inhibitors has not yet been explored, mainly due to the scarcity of known compounds possessing efficient reversible inhibitory activities. In this study we reported the first virtual screening analysis for the identification of reversible MAGL inhibitors. Among the screened compounds, the (4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)methanone (CL6a) is a promising reversible MAGL inhibitor lead (Ki = 8.6 μM), which may be used for the future development of a new class of MAGL inhibitors. Furthermore, the results demonstrate the validity of the methodologies that we followed, encouraging additional screenings of other commercial databases. © 2014 Elsevier Ltd. All rights reserved.

Loading Center for Molecular Biomedicine collaborators
Loading Center for Molecular Biomedicine collaborators