Time filter

Source Type

Arenas M.,Center for Molecular Biology Severo Ochoa | Posada D.,University of Vigo
Molecular Biology and Evolution | Year: 2014

Genomic evolution can be highly heterogeneous. Here, we introduce a new framework to simulate genome-wide sequence evolution under a variety of substitution models thatmay change along the genome and the phylogeny, following complex multispecies coalescent histories that can include recombination, demographics, longitudinal sampling, population subdivision/species history, and migration. A key aspect of our simulation strategy is that the heterogeneity of the whole evolutionary process can be parameterized according to statistical prior distributions specified by the user. We used this framework to carry out a study of the impact of variable codon frequencies across genomic regions on the estimation of the genome-wide nonsynonymous/synonymous ratio. We found that both variable codon frequencies across genes and rate variation among sites and regions can lead to severe underestimation of the global dN/dS values. The program SGWE-Simulation of Genome-Wide Evolution-is freely available from http://code.google.com/ p/sgwe-project/, including extensive documentation and detailed examples. © The Author 2014. Source

Arenas M.,Center for Molecular Biology Severo Ochoa | Arenas M.,University of Vigo | Lopes J.S.,Instituto Gulbenkian Of Ciencia | Beaumont M.A.,University of Bristol | Posada D.,University of Vigo
Molecular Biology and Evolution | Year: 2014

The estimation of substitution and recombination rates can provide important insights into the molecular evolution of protein-coding sequences. Here, we present a new computational framework, called "CodABC," to jointly estimate recombination, substitution and synonymous and nonsynonymous rates from coding data. CodABC uses approximate Bayesian computation with and without regression adjustment and implements a variety of codon models, intracodon recombination, and longitudinal sampling. CodABC can provide accurate joint parameter estimates from recombining coding sequences, often outperforming maximum-likelihood methods based on more approximate models. In addition, CodABC allows for the inclusion of several nuisance parameters such as those representing codon frequencies, transition matrices, heterogeneity across sites or invariable sites. CodABC is freely available from http://code.google.com/p/codabc/, includes a GUI, extensive documentation and ready-to-use examples, and can run in parallel on multicore machines. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. Source

Lopes J.S.,University of Reading | Lopes J.S.,Instituto Gulbenkian Of Ciencia | Arenas M.,University of Vigo | Arenas M.,Center for Molecular Biology Severo Ochoa | And 3 more authors.
Heredity | Year: 2014

The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets. © 2014 Macmillan Publishers Limited. All rights reserved. Source

Kochling T.,Center for Molecular Biology Severo Ochoa | Lara-Martin P.,University of Cadiz | Gonzalez-Mazo E.,University of Cadiz | Amils R.,Center for Molecular Biology Severo Ochoa | And 2 more authors.
International Microbiology | Year: 2011

The composition of the microbial community inhabiting the anoxic coastal sediments of the Bay of Cádiz (southern Spain) was investigated using a molecular approach consisting of PCR cloning and denaturing gradient gel electrophoresis (DGGE), based on 16S rRNA sequences. The total cell count was 1-5 × 108 cells/g sediment and, as determined by catalyzed reporter deposition-fluorescent in situ hybridization (CARD-FISH), the proportion of Bacteria to Archaea was about 70:30. The analysis of 16S-rRNA gene sequences revealed a wide spectrum of microorganisms, which could be grouped into 111 operational taxonomic units (OTUs). Many of the OTUs showed high phylogenetic similarity to microorganisms living in marine sediments of diverse geographic origin. The phylogenetic groups that were predominantly detected were Firmicutes, Deltaproteobacteria, and Gammaproteobacteria, accounting for 23, 15, and 14% of the clones, respectively. Diversity in the domain Archaea was significantly lower than in the domain Bacteria. The majority of the archaeal OTUs belonged to the Crenarchaeota phylum. Since most of the sequences could not be identified precisely at the genus/species level, the functional roles of the microorganisms in the ecosystem could not be inferred. However, seven OTUs affiliated with the Delta- and Epsilonproteobacteria were identified down to the genus level, with all of the identified genera known to occur in sulfate-rich marine environments. Source

Arenas M.,Center for Molecular Biology Severo Ochoa | Dos Santos H.G.,Center for Molecular Biology Severo Ochoa | Posada D.,University of Vigo | Bastolla U.,Center for Molecular Biology Severo Ochoa
Bioinformatics | Year: 2013

Motivation: Models of molecular evolution aim at describing the evolutionary processes at the molecular level. However, current models rarely incorporate information from protein structure. Conversely, structure-based models of protein evolution have not been commonly applied to simulate sequence evolution in a phylogenetic framework, and they often ignore relevant evolutionary processes such as recombination. A simulation evolutionary framework that integrates substitution models that account for protein structure stability should be able to generate more realistic in silico evolved proteins for a variety of purposes. Results: We developed a method to simulate protein evolution that combines models of protein folding stability, such that the fitness depends on the stability of the native state both with respect to unfolding and misfolding, with phylogenetic histories that can be either specified by the user or simulated with the coalescent under complex evolutionary scenarios, including recombination, demographics and migration. We have implemented this framework in a computer program called ProteinEvolver. Remarkably, comparing these models with empirical amino acid replacement models, we found that the former produce amino acid distributions closer to distributions observed in real protein families, and proteins that are predicted to be more stable. Therefore, we conclude that evolutionary models that consider protein stability and realistic evolutionary histories constitute a better approximation of the real evolutionary process. © The Author 2013. Published by Oxford University Press. All rights reserved. Source

Discover hidden collaborations