Time filter

Source Type

Hung Y.-Y.,Chang Gung University | Hung Y.-Y.,Center for Menopause and Reproductive Research | Kang H.-Y.,Chang Gung University | Kang H.-Y.,Center for Menopause and Reproductive Research | And 3 more authors.
Psychiatry Research

Accumulating evidences suggest that Toll-like receptors (TLRs) were involved in the pathophysiology of major depressive disorder. TLR4 was thought to be associated with major depressive disorder in animal model, but the others were still unknown. In order to examine TLR1-9 mRNA expression levels in peripheral blood and their relationships with the psychopathology of major depressive disorder, 30 patients with major depressive disorder were compared with 29 healthy controls. The 17-item Hamilton Depression Rating Scale (HAMD-17) was used to assess the severity of major depression. The mRNA expression levels of TLRs were examined in parallel with a housekeeping gene using real-time polymerase chain reaction (RT-PCR). Analysis of covariance with age and body mass index adjustment revealed a significantly higher expression of TLR3, 4, 5 and 7 mRNA but lower expression of TLR1 and 6 in patients with major depressive disorder as compared with healthy controls. Multiple linear regression analysis revealed that TLR4 was an independent risk factor relating to severity of major depression. These findings suggest that TLRs, especially TLR4, may be involved in the psychopathology of major depression. © 2014 Elsevier Ireland Ltd. All rights reserved. Source

Yang Y.-C.,Kaohsiung Chang Gung Memorial Hospital | Yang Y.-C.,Chang Gung University | Yang Y.-C.,Center for Menopause and Reproductive Research | Fu H.-C.,Kaohsiung Chang Gung Memorial Hospital | And 8 more authors.

The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16 INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia. © 2013 Yang et al. Source

Discover hidden collaborations