Time filter

Source Type

Ferreira S.C.,New University of Lisbon | Conde A.,CSIC - National Center for Metallurgical Research | Arenas M.A.,CSIC - National Center for Metallurgical Research | Rocha L.A.,Center for Mechanics and Materials Technologies 2M | And 2 more authors.
Materials | Year: 2014

Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. © 2014 by the authors.

Alves A.C.,Center for Mechanics and Materials Technologies 2M | Oliveira F.,Center for Mechanics and Materials Technologies 2M | Wenger F.,École Centrale Paris | Ponthiaux P.,École Centrale Paris | And 3 more authors.
Journal of Physics D: Applied Physics | Year: 2013

Tribocorrosion plays an important role in the lifetime of metallic implants. Once implanted, biomaterials are subjected to micro-movements in aggressive biological fluids. Titanium is widely used as an implant material because it spontaneously forms a compact and protective nanometric thick oxide layer, mainly TiO2, in ambient air. That layer provides good corrosion resistance, and very low toxicity, but its low wear resistance is a concern. In this work, an anodizing treatment was performed on commercial pure titanium to form a homogeneous thick oxide surface layer in order to provide bioactivity and improve the biological, chemical and mechanical properties. Anodizing was performed in an electrolyte containing β-glycerophosphate and calcium acetate. The influence of the calcium acetate content on the tribocorrosion behaviour of the anodized material was studied. The concentration of calcium acetate in the electrolyte was found to largely affect the crystallographic structure of the resulting oxide layer. Better tribocorrosion behaviour was noticed on increasing the calcium acetate concentration. © 2013 IOP Publishing Ltd.

Loading Center for Mechanics and Materials Technologies 2M collaborators
Loading Center for Mechanics and Materials Technologies 2M collaborators