Time filter

Source Type

Pasco, WA, United States

Riyaz-Ul-Hassan S.,Indian Institute of Integrative Medicine | Strobel G.,Montana State University | Geary B.,Brigham Young University | Sears J.,Center for Laboratory Services Lee Group
Journal of Microbiology and Biotechnology | Year: 2013

A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2, 4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1, 8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.© the Korean Society for Microbiology and Biotechnology.

Kudalkar P.,Montana State University | Strobel G.,Montana State University | Riyaz-Ul-Hassan S.,Montana State University | Geary B.,Brigham Young University | Sears J.,Center for Laboratory Services Lee Group
Mycoscience | Year: 2012

Muscodor sutura is described as a novel species that is also an endophyte of Prestonia trifidi. Uniquely, this fungus produces a reddish pigment, on potato dextrose agar (PDA), when grown in the dark. In addition, the organism makes some volatile organic compounds that have not been previously reported from this genus, namely, thujopsene, chamigrene, isocaryophyllene, and butanoic acid, 2-methyl. These and other volatile compounds in the mixture possess wide-spectrum antifungal activity and no observable antibacterial activity. Most unusually, on PDA, the newly developing hyphae of this fungus grow in a perfect stitching pattern, in and out of the agar surface. The partial ITS-DNA sequence of this organism is identical to that of Muscodor vitigenus but it differs from all other Muscodor spp. Justification for a new species, as Muscodor sutura, is collectively based on morphological, cultural, chemical, and bioactivity properties. © 2011 The Mycological Society of Japan and Springer.

Tomsheck A.R.,Montana State University | Strobel G.A.,Montana State University | Booth E.,Montana State University | Geary B.,Brigham Young University | And 6 more authors.
Microbial Ecology | Year: 2010

An endophytic fungus of Persea indica was identified, on the basis of its anamorphic stage, as Nodulosporium sp. by SEM. Partial sequence analysis of ITS rDNA revealed the identity of the teleomorphic stage of the fungus as Hypoxylon sp. It produces an impressive spectrum of volatile organic compounds (VOCs), most notably 1,8-cineole, 1-methyl-1,4-cyclohexadiene, and tentatively identified (+)-.alpha.-methylene-.alpha.-fenchocamphorone, among many others, most of which are unidentified. Six-day-old cultures of Hypoxylon sp. displayed maximal VOC-antimicrobial activity against Botrytis cinerea, Phytophthora cinnamomi, Cercospora beticola, and Sclerotinia sclerotiorum suggesting that the VOCs may play some role in the biology of the fungus and its survival in its host plant. Media containing starch- or sugar-related substrates best supported VOC production by the fungus. Direct on-line quantification of VOCs was measured by proton transfer mass spectrometry covering a continuous range with optimum VOC production occurred at 6 days at 145 ppmv with a rate of production of 7.65 ppmv/h. This report unequivocally demonstrates that 1,8-cineole (a monoterpene) is produced by a microorganism, which represents a novel and important source of this compound. This monoterpene is an octane derivative and has potential use as a fuel additive as do the other VOCs of this organism. Thus, fungal sourcing of this compound and other VOCs as produced by Hypoxylon sp. greatly expands their potential applications in medicine, industry, and energy production. © 2010 Springer Science+Business Media, LLC.

Booth E.,Montana State University | Strobel G.,Montana State University | Knighton B.,Montana State University | Sears J.,Center for Laboratory Services Lee Group | And 2 more authors.
Biotechnology Letters | Year: 2011

A custom-made stainless steel column was designed to contain various materials that would trap the hydrocarbons and hydrocarbon derivatives during the processes of fungal fermentation ultimately yielding preparative amounts of volatile organic substances (VOCs). Trapping materials tested in the column were Carbotrap materials A and B (Supelco) as well as bentonite-shale from the oil bearing areas of Eastern Montana, the former allowed for the effective and efficient trapping of VOCs from purged cultures of Hypoxylon sp. Trapping efficiencies of various materials were measured by both gravimetric as well as proton transfer reaction mass spectroscopy with the Carbotraps A and B being 99% efficient when tested with known amounts of 1,8-cineole. Trapped fungal VOCs could effectively be removed and recovered via controlled heating of the stainless steel column followed by passage of the gases through a liquid nitrogen trap at a recovery rate of ca 65-70%. This method provides for the recovery of mg quantities of compounds normally present in the gas phase that may be needed for spectroscopy, bioassays and further separation and analysis and may have wide applicability for many other biological systems involving VOCs. Other available Carbotraps could be used for other applications. © 2011 Springer Science+Business Media B.V.

Strobel G.,Montana State University | Booth E.,Montana State University | Schaible G.,Montana State University | Mends M.T.,Montana State University | And 2 more authors.
Biotechnology Letters | Year: 2013

The construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can degrade biological materials to produce fuel-like hydrocarbons in a relatively short time frame that become trapped by the shale. The conditions selected for testing included a particulate Montana shale (serving as the "Trap Shale"), plant materials (leaves and stems of three extant species whose origins are in the late Cretaceous), a water-circulating system, sterile air, and a specially designed Carbotrap through which all air was passed as exhaust and volatile were hydrocarbons trapped. The fungus for initial testing was Annulohypoxylon sp., isolated as an endophyte of Citrus aurantifolia. It produces, in solid and liquid media, a series of hydrocarbon-like molecules. Some of these including 1,8-cineole, 2-butanone, propanoic acid, 2-methyl-, methyl ester, benzene (1-methylethyl)-, phenylethyl alcohol, benzophenone and azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl), [1S-(1α,7α,8aβ)]. These were the key signature compounds used in an initial Paleobiosphere test. After 3 weeks, incubation, the volatiles associated with the harvested "Trap Shale" included each of the signature substances as well as other fungal-associated products: some indanes, benzene derivatives, some cyclohexanes, 3-octanone, naphthalenes and others. The fungus thus produced a series of "Trap Shale" products that were representative of each of the major classes of hydrocarbons in diesel fuel (Mycodiesel). Initial tests with the Paleobiosphere offer some evidence for a possible origin of hydrocarbons trapped in bentonite shale. Thus, with modifications, numerous other tests can also be designed for utilization in the Paleobiosphere. © 2012 Springer Science+Business Media Dordrecht.

Discover hidden collaborations