Center for Isotopic Research on Cultural and Environmental Heritage

Caserta, Italy

Center for Isotopic Research on Cultural and Environmental Heritage

Caserta, Italy

Time filter

Source Type

Lubritto C.,The Second University of Naples | Lubritto C.,Center for Isotopic Research on Cultural and Environmental Heritage | Sirignano C.,The Second University of Naples | Sirignano C.,Center for Isotopic Research on Cultural and Environmental Heritage | And 4 more authors.
Radiocarbon | Year: 2013

The archaeological site of Zaballa is a Medieval rural site located in the province of Álava (Basque Country, northern Iberia). The site has been excavated during a rescue archaeology project, over an area of about 4.5 ha, where human occupation has been documented ranging from the 6th to 15th century. The archaeological operations have shown the transformation of the village, in diachronic terms, by unearthing the structure of production areas (agricultural lands, storage areas, and craft activities), the shape of domestic spaces, and the Saint Tirso monastery, with its adjacent cemetery. Much of the evidence and features related to a peasant community are small and disturbed by recent agricultural activities, and are therefore difficult to be interpreted in social terms. Studying dietary patterns has helped to fill this gap by providing a protein-rich diet of the elitist population and by highlighting the existence of hierarchies separating the inhabitants of Zaballa. In this paper, we discuss the reconstruction of the chronological sequence of the site inhabitation, with a multidisciplinary approach. The archaeological evidences and the critical use of radiocarbon dating have been integrated with stable isotope analysis on human remains found in the cemetery of the church of San Tirso, resulting in a first attempt to find evidence of the social structure of the rural community of Zaballa. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona.


Tandoh J.B.,The Second University of Naples | Marzaioli F.,The Second University of Naples | Marzaioli F.,Center for Isotopic Research on Cultural and Environmental Heritage | Battipaglia G.,The Second University of Naples | And 8 more authors.
Radiocarbon | Year: 2013

The question of whether the rise in CO2 levels observed during the industrial era has influenced the rates of tree biomass growth represents one of the main unsolved questions in the field of climate change science. In this framework, the African tropical forest represents one of the most important carbon (C) sinks, but detailed knowledge of its response to elevated CO2 is still lacking, especially regarding tree growth rate estimations. A major limitation to determining growth rates in the African tropical region is that many trees lack seasonality in cambial activity determining annual growth rings. In this study, several species of trees characterizing the African tropical forest have been investigated to estimate their biomass growth rate by means of a procedure based on 14C and growth models. A total of 71 subsamples were analyzed for a Entandrophragma cylindricum (sapele) tree, and 38 and 25 wood subsamples for Erythrophleum suaveolens (tali) and Triplochiton scleroxylon (ayous) trees, respectively, using radiocarbon measurements at the Centre for Isotopic Research on Cultural and Environmental Heritage (CIRCE). All measured modern samples were in agreement with the Southern Hemisphere (SH) 14C bomb-spike curve. Observed preliminary results indicate a decrease in the growth rate of the sapele tree (~350 yr old) in the industrial period compared to the pre-industrial era. Growth rates for trees of the other 2 species were higher than sapele, with ayous being the fastest-growing species. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona.


Nonni S.,University of Rome La Sapienza | Nonni S.,Center for Isotopic Research on Cultural and Environmental Heritage | Marzaioli F.,Center for Isotopic Research on Cultural and Environmental Heritage | Marzaioli F.,The Second University of Naples | And 10 more authors.
Radiocarbon | Year: 2013

This paper reports the results from applying the Cryo2SoniC (Cryobreaking, Sonication, Centrifugation) protocol to some lime mortars sampled from the citadel of Shayzar (Syria). The overall aims of this project are 1) to use the properties offered by high-precision accelerator mass spectrometry (AMS) radiocarbon dating for the evaluation of absolute chronology with its typical robust time constraints (i.e. 25 14C yr), and 2) to apply the dating directly to the citadel structures in order to prevent possible biasing effects potentially affecting indirect 14C dating on organic materials found at the study site. The analyses presented in this paper have been mainly performed as a preliminary check of the Cryo2SoniC methodology in order to assess its applicability to this study site by comparing observed mortar results with archaeological expectations about the citadel development phasing and charcoals found encased in mortars. Petrographic and mineralogical thin-section analyses by optical microscopy (TSOM), X-ray powder diffraction (XRD), and scanning electron microscopy plus energy dispersive spectroscopy (SEM/EDS) investigations were carried out for characterization of the mortar samples to verify the occurrence of some features, related to their production technology, which may introduce dating offsets. The resulting 14C calibrated ages were in agreement with the archaeological expectations based on type and stratigraphic site reconstructions, in situ inscriptions, and written sources. Such results showed also a general (with 1 exception) statistical agreement among the charcoals and the analyzed mortars simultaneously, confirming the archaeological expectations for the Shayzar citadel. Results presented in this paper indicate good accuracy for the applied procedure for chronology reconstruction and highlight the capability of Cryo2SoniC to further characterize the Shayzar site. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona.


Allevato E.,University of Naples Federico II | Fedele F.,University of Naples Federico II | Terrasi F.,The Second University of Naples | Terrasi F.,Center for Isotopic Research on Cultural and Environmental heritage | And 3 more authors.
Radiocarbon | Year: 2013

Nine excavation seasons at Ossimo Anvòia in the Val Camonica (Central Alps, Italy) have brought to light a Copper Age ceremonial area with symbolic monoliths (statue menhirs) in their original position. Hundreds of artifacts and ecofacts indicate ideological activity during the 3rd millennium BC. A large pit (F18) was discovered that was unusual for its great size and the abundance of well-preserved charcoal. The pit housed a fallen monolith (M9) showing complicated reshaping. A detailed spatial study based on 6 radiocarbon accelerator mass spectrometry (AMS) measurements combined with charcoal analysis has untangled key information to define the history of feature F18-M9. 14C data show that the burning event occurred most probably in the 4th century AD, not in prehistory. We infer a unique episode of "reconsecration" during the very latest phases of pagan cult activity in the Val Camonica. Further studies are needed to resolve the relationships with other features of the site. In addition, charcoal analysis has produced paleobotanical information for a scarcely known period in the environmental history of the area. A sparse forest with Picea abies, Larix decidua, and Fagus sylvatica existed, associated with areas likely devoted to grazing. There is a remarkable absence of chestnut. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona.


Capano M.,Center for Isotopic Research on Cultural and Environmental Heritage | Capano M.,The Second University of Naples | Marzaioli F.,Center for Isotopic Research on Cultural and Environmental Heritage | Marzaioli F.,The Second University of Naples | And 10 more authors.
Radiocarbon | Year: 2012

The Ansanto Valley (southern Italy) is characterized by hydrothermal phenomena, with volcanic gas emissions arising from some vents. In the 1st millennium BC, a sanctuary dedicated to the goddess Mephitis was built but later destroyed by landslides in the valley. During archaeological excavations in the 1950s, many items were found including wooden artifacts, preserved thanks to the imbibition and subsequent mineralization of the wood tissues due to the gas emissions. Radiocarbon dating of these objects is underway at CIRCE (Centre for Isotopic Research on Cultural and Environmental Heritage), in Caserta, Italy. Unfortunately, 2 main problems arise in dating these materials. The first is possible fossil dilution caused by the CO2 emitted from the nearby volcanic vents, which could affect the trees of the valley and also the archaeological materials. In order to determine the magnitude of the fossil dilution in the area, 14C measurements were performed on contemporaneous wood cored from 2 oak trees growing near the vents. 14C values measured in these samples confirmed the presence of a strong fossil dilution in the Ansanto Valley. The second problem is the restoration that the objects underwent during the last century (mostly by using modern organic substances). To investigate suitable pretreatment procedures for removing the restoration materials from the archaeological findings, contemporaneous wood was also analyzed. The wood of trees from the Ansanto Valley and from a distant village (unaffected by the Ansanto fossil dilution) were submitted to the same restoration process applied to the archaeological artifacts, followed by an "artificial weathering" process. Some archaeological materials were also tested for the removal of restoration materials. We subjected the artificially aged trees and the archaeological samples to different chemical processes. Here, we present the results of these processes. Almost all methods turned out to be suitable for the contemporaneous wood, while the results for the archaeological samples remain uncertain. For this reason, more tests are needed, concerning the "artificial weathering," the restoration, and the chemical procedure for removing the consolidation materials. © 2012 by the Arizona Board of Regents on behalf of the University of Arizona.


Capano M.,Center for Isotopic Research on Cultural and Environmental Heritage | Capano M.,The Second University of Naples | Altieri S.,Center for Isotopic Research on Cultural and Environmental Heritage | Altieri S.,The Second University of Naples | And 14 more authors.
Radiocarbon | Year: 2013

The Ansanto Valley (southern Italy) is characterized by vents and boiling mud lakes that emit typical volcanic exhalations (mostly fossil CO2). This fossil dilution spreads over the Ansanto Valley and its impact on local trees is investigated in this study. Six trees at increasing distance from the emitting sources and 2 aliquots of gas were sampled. Dendrochronological analysis was performed on tree cores in order to check the accuracy of the tree-ring sequences; the results indicate no anomalies in the curves of the analyzed trees. δ13C and radiocarbon (14C) analyses were performed on the α-cellulose extracted from some selected tree rings. The main aim of δ13C analysis was to gain information about the origin of CO2 arising from the source; the results support the hypothesis of a carbonatic origin, with respect to a volcanic origin. 14C analysis was performed to evaluate the influence and to quantify the percentage of fossil dilution characterizing the local atmosphere and affecting the trees at different distances from the source during the years. The results show the presence of a strong fossil dilution affecting the trees, increasing toward the sources (from ~6% at 80 m distance to ~30% at 20 m from the nearest vent) with quite stable values over the examined period. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona.

Loading Center for Isotopic Research on Cultural and Environmental Heritage collaborators
Loading Center for Isotopic Research on Cultural and Environmental Heritage collaborators