Entity

Time filter

Source Type

International Energy and, United States

Bickel J.E.,University of Texas at Austin | Bickel J.E.,Center for International Energy and Environmental Policy | Bickel J.E.,1 University Station | Agrawal S.,University of Texas at Austin
Climatic Change | Year: 2013

In this paper, we extend the work of Goes, Tuana, and Keller (Climatic Change 2011; GTK) by reexamining the economic benefit, of aerosol geoengineering. GTK found that a complete substitution of geoengineering for CO2 abatement fails a cost-benefit test over a wide range of scenarios regarding (i) the probability that such a program would be aborted and (ii) the economic damages caused by geoengineering itself. In this paper, we reframe the conditions under which GTK assumed geoengineering would/could be used. In so doing, we demonstrate that geoengineering may pass a cost-benefit test over a wide range of scenarios originally considered by GTK. © 2012 Springer Science+Business Media Dordrecht. Source


Stillwell A.S.,University of Texas at Austin | King C.W.,University of Texas at Austin | King C.W.,Center for International Energy and Environmental Policy | Webber M.E.,University of Texas at Austin | And 2 more authors.
Ecology and Society | Year: 2011

Understanding the nexus between energy and water - water used for energy and energy used for water - has become increasing important in a changing world. As growing populations demand more energy supplies and water resources, research aims to analyze the interconnectedness of these two resources. Our study sought to quantify the energy-water relationship in Texas, specifically the relationship between electricity generation and water resources as it pertains to policy and society. We examined the water requirements for various types of electricity generating facilities, for typical systems both nationwide and in Texas. We also addressed the energy requirements of water supply and wastewater treatment systems, comparing national averages with Texas-specific values. Analysis of available data for Texas reveals that approximately 595,000 megaliters of water annually - enough water for over three million people for a year - are consumed by cooling the state's thermoelectric power plants while generating approximately 400 terawatt-hours of electricity. At the same time, each year Texas uses an estimated 2.1 to 2.7 terawatthours of electricity for water systems and 1.8 to 2.0 terawatt-hours for wastewater systems - enough electricity for about 100,000 people for a year. In preparing our analysis, it became clear that substantially more site-specific data are necessary for a full understanding of the nature of the energy-water nexus and the sustainability of economic growth in Texas. We recommend that Texas increase efforts to collect accurate data on the withdrawal and consumption of cooling and process water at power plants, as well as data on electricity consumption for public water supply and wastewater treatment plants and distribution systems. The overarching conclusion of our work is that increased efficiency advances the sustainable use of both energy and water. Improving water efficiency will reduce power demand, and improving energy efficiency will reduce water demand. Greater efficiency in usage of either energy or water will help stretch our finite supplies of both, as well as reduce costs to water and power consumers. © 2011 by the author(s). Source


Blackburn G.,University of Texas at Austin | Magee C.,University of Texas at Austin | Rai V.,University of Texas at Austin | Rai V.,Center for International Energy and Environmental Policy | And 2 more authors.
Electricity Journal | Year: 2014

Residential solar's diffusion across the U.S. power grid is inspiring concern in the utility industry. Of particular debate have been net energy metering policies (NEM), which engender revenue losses and lead to cross-subsidization of solar customers by non-solar customers. An emerging alternative to NEM is the value of solar tariff (VOST), which is designed to pay residential solar generation based on a more nuanced benefit-cost analysis to determine the actual value of residential solar to utility operations. © 2013 Elsevier Inc. Source


King C.W.,Center for International Energy and Environmental Policy | Webber M.E.,Center for International Energy and Environmental Policy | Duncan I.J.,Bureau of Economic Geology
Energy Policy | Year: 2010

Concern over increased demand for petroleum, reliable fuel supply, and global climate change has resulted in the US government passing new Corporate Average Fuel Economy standards and a Renewable Fuels Standard. Consequently, the fuel mix for light duty vehicle (LDV) travel in the United States will change over the coming years. This paper explores the embodied water consumption and withdrawal associated with two projections for future fuel use in the US LDV sector. This analysis encompasses conventional and unconventional fossil fuels, corn ethanol, cellulosic ethanol, soy biodiesel, electricity, and hydrogen. The existing mandate in the US to blend ethanol into gasoline had effectively committed 3300 billion liters of irrigation water in 2005 (approximately 2.4% of US 2005 fresh water consumption) for producing fuel for LDVs. With current irrigation practices, fuel processing, and electricity generation, it is estimated that by 2030, approximately 14,000 billion liters of water per year will be consumed and 23,000-27,000 billion liters withdrawn to produce fuels used in LDVs. Irrigation for biofuels dominates projected water usage for LDV travel, but other fuels (coal to liquids, oil shale, and electricity via plug-in hybrid vehicles) will also contribute appreciably to future water consumption and withdrawal, especially on a regional basis. © 2009 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations