Time filter

Source Type

Mishra B.,Biodiversity and Climate Research Center | Mishra B.,Goethe University Frankfurt | Thines M.,Biodiversity and Climate Research Center | Thines M.,Goethe University Frankfurt | Thines M.,Center for Integrative Fungal Research
Mycological Progress | Year: 2014

MrBayes is a program that uses a Bayesian framework for inferring phylogenetic relationships. As MrBayes is a command-line-driven program, users acquainted to programs with graphical user interfaces will not find it easy to operate, especially as it requires a complex input format for the data to be analysed. We thus developed siMBa (simple MrBayes), a simple graphical user interface for MrBayes. This tool gives the user interactive control over most of the parameters and also facilitates the input of a multiple sequence alignment, as any widely used format can be used. siMBa is coded in Perl using the Tk module. Executables are provided for Windows, Linux, and Macintosh. The Perl codes, along with executables for different operating system, are freely available to download from [http://www.thines-lab.senckenberg.de/simba]. © 2014, The Author(s).


Sharma R.,Biodiversity and Climate Research Center | Sharma R.,Goethe University Frankfurt | Sharma R.,Center for Integrative Fungal Research | Xia X.,Biodiversity and Climate Research Center | And 25 more authors.
BMC Genomics | Year: 2015

Background: Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. Results: Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. Conclusions: The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors. © 2015 Sharma et al.


Sharma R.,Biodiversity and Climate Research Center | Sharma R.,Goethe University Frankfurt | Sharma R.,Center for Integrative Fungal Research | Gassel S.,Goethe University Frankfurt | And 8 more authors.
BMC Genomics | Year: 2015

Background: Xanthophyllomyces dendrorhous is a basal agaricomycete with uncertain taxonomic placement, known for its unique ability to produce astaxanthin, a carotenoid with antioxidant properties. It was the aim of this study to elucidate the organization of its CoA-derived pathways and to use the genomic information of X. dendrorhous for a phylogenomic investigation of the Basidiomycota. Results: The genome assembly of a haploid strain of Xanthophyllomyces dendrorhous revealed a genome of 19.50 Megabases with 6385 protein coding genes. Phylogenetic analyses were conducted including 48 fungal genomes. These revealed Ustilaginomycotina and Agaricomycotina as sister groups. In the latter a well-supported sister-group relationship of two major orders, Polyporales and Russulales, was inferred. Wallemia occupies a basal position within the Agaricomycotina and X. dendrorhous represents the basal lineage of the Tremellomycetes, highlighting that the typical tremelloid parenthesomes have either convergently evolved in Wallemia and the Tremellomycetes, or were lost in the Cystofilobasidiales lineage. A detailed characterization of the CoA-related pathways was done and all genes for fatty acid, sterol and carotenoid synthesis have been assigned. Conclusions: The current study ascertains that Wallemia with tremelloid parenthesomes is the most basal agaricomycotinous lineage and that Cystofilobasidiales without tremelloid parenthesomes are deeply rooted within Tremellomycetes, suggesting that parenthesomes at septal pores might be the core synapomorphy for the Agaricomycotina. Apart from evolutionary insights the genome sequence of X. dendrorhous will facilitate genetic pathway engineering for optimized astaxanthin or oxidative alcohol production. © Sharma et al.

Loading Center for Integrative Fungal Research collaborators
Loading Center for Integrative Fungal Research collaborators