Center for Geographic Medicine Research

Kilifi, Kenya

Center for Geographic Medicine Research

Kilifi, Kenya
SEARCH FILTERS
Time filter
Source Type

PubMed | National Institute of Allergy and Infectious Diseases, University of Bamako, University of Oxford and Center for Geographic Medicine Research
Type: | Journal: Scientific reports | Year: 2015

The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 L of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-nave individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.


Douglas A.D.,University of Oxford | Williams A.R.,University of Oxford | Illingworth J.J.,University of Oxford | Kamuyu G.,Center for Geographic Medicine Research | And 12 more authors.
Nature Communications | Year: 2011

Current vaccine strategies against the asexual blood stage of Plasmodium falciparum are mostly focused on well-studied merozoite antigens that induce immune responses after natural exposure, but have yet to induce robust protection in any clinical trial. Here we compare human-compatible viral-vectored vaccines targeting ten different blood-stage antigens. We show that the full-length P. falciparum reticulocyte-bindinGprotein homologue 5 (PfRH5) is highly susceptible to cross-strain neutralizing vaccine-induced antibodies, out-performing all other antigens delivered by the same vaccine platform. We find that, despite being susceptible to antibody, PfRH5 is unlikely to be under substantial immune selection pressure; there is minimal acquisition of anti-PfRH5 IgG antibodies in malaria-exposed Kenyans. These data challenge the widespread beliefs that any merozoite antigen that is highly susceptible to immune attack would be subject to significant levels of antigenic polymorphism, and that erythrocyte invasion by P. falciparum is a degenerate process involving a series of parallel redundant pathways. © 2011 Macmillan Publishers Limited. All rights reserved.


Williams A.R.,University of Oxford | Douglas A.D.,University of Oxford | Miura K.,U.S. National Institutes of Health | Illingworth J.J.,University of Oxford | And 14 more authors.
PLoS Pathogens | Year: 2012

No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines.


Osier F.H.A.,Center for Geographic Medicine Research | Osier F.H.A.,London School of Hygiene and Tropical Medicine | Weedall G.D.,London School of Hygiene and Tropical Medicine | Weedall G.D.,University of Liverpool | And 10 more authors.
Infection and Immunity | Year: 2010

Although Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate, extensive allelic diversity may compromise its vaccine potential. We have previously shown that naturally acquired antibodies to AMA1 were associated with protection from clinical malaria in this Kenyan population. To assess the impact of allelic diversity on naturally acquired immunity, we first sequenced the ectodomainencoding region of P. falciparum ama1 from subjects with asymptomatic, mild, and severe malaria and measured allele frequency distributions. We then measured antibodies to three allelic AMA1 proteins (AMA1-3D7, AMA1-FVO, and AMA1-HB3) and used competition enzyme-linked immunosorbent assays (ELISAs) to analyze allele-specific antibodies. Seventy-eight unique haplotypes were identified from 129 alleles sampled. No clustering of allelic haplotypes with disease severity or year of sampling was observed. Differences in nucleotide frequencies in clinical (severe plus mild malaria) versus asymptomatic infections were observed at 16 polymorphic positions. Allele frequency distributions were indicative of balancing selection, with the strongest signature being identified in domain III (Tajima's D = 2.51; P < 0.05). Antibody reactivities to each of the three allelic AMA1 proteins were highly correlated (P < 0.001 for all pairwise comparisons). Although antibodies to conserved epitopes were abundant, 48% of selected children with anti-AMA1 IgG (n = 106) had detectable reactivity to allele-specific epitopes as determined by a competition ELISA. Antibodies to both conserved and allele-specific epitopes in AMA1 may contribute to clinical protection. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Biswas S.,University of Oxford | Choudhary P.,University of Oxford | Elias S.C.,University of Oxford | Miura K.,U.S. National Institutes of Health | And 13 more authors.
PLoS ONE | Year: 2014

The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite - MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors - ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.


PubMed | University of Oxford, U.S. National Institutes of Health and Center for Geographic Medicine Research
Type: Clinical Trial, Phase I | Journal: PloS one | Year: 2014

The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-nave adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.


Grosse S.D.,National Center on Birth Defects and Developmental Disabilities | Odame I.,University of Toronto | Atrash H.K.,National Center on Birth Defects and Developmental Disabilities | Amendah D.D.,African Population and Health Research Center | And 3 more authors.
American Journal of Preventive Medicine | Year: 2011

Sickle cell disease (SCD) is common throughout much of sub-Saharan Africa, affecting up to 3% of births in some parts of the continent. Nevertheless, it remains a low priority for many health ministries. The most common form of SCD is caused by homozygosity for the β-globin S gene mutation (SS disease). It is widely believed that this condition is associated with very high child mortality, but reliable contemporary data are lacking. We have reviewed available African data on mortality associated with SS disease from published and unpublished sources, with an emphasis on two types of studies: cross-sectional population surveys and cohort studies. We have concluded that, although current data are inadequate to support definitive statements, they are consistent with an early-life mortality of 50%90% among children born in Africa with SS disease. Inclusion of SCD interventions in child survival policies and programs in Africa could benefit from more precise estimates of numbers of deaths among children with SCD. A simple, representative, and affordable approach to estimate SCD child mortality is to test blood specimens already collected through large population surveys targeting conditions such as HIV, malaria, and malnutrition, and covering children of varying ages. Thus, although there is enough evidence to justify investments in screening, prophylaxis, and treatment for African children with SCD, better data are needed to estimate the numbers of child deaths preventable by such interventions and their cost effectiveness. © 2011 American Journal of Preventive Medicine.


Murungi L.M.,Center for Geographic Medicine Research | Kamuyu G.,Center for Geographic Medicine Research | Lowe B.,Center for Geographic Medicine Research | Bejon P.,Center for Geographic Medicine Research | And 7 more authors.
Vaccine | Year: 2013

Antibodies to selected Plasmodium falciparum merozoite antigens are often reported to be associated with protection from malaria in one epidemiological cohort, but not in another. Here, we sought to understand this paradox by exploring the hypothesis that a threshold concentration of antibodies is necessary for protection. We analyzed data from two independent cohorts along the Kenyan coast, one in which antibodies to AMA1, MSP-2 and MSP-3 were associated with protection from malaria (Chonyi) and another in which this association was not observed (Junju). We used a malaria reference reagent to standardize antibody measurements across both cohorts, and applied statistical methods to derive the threshold concentration of antibodies against each antigen that best correlated with a reduced risk of malaria (the protective threshold), in the Chonyi cohort. We then tested whether antibodies in Junju reached the protective threshold concentrations observed in the Chonyi cohort. Except for children under 3 years, the age-matched proportions of children achieving protective threshold concentrations of antibodies against AMA1 and MSP-2 were significantly lower in Junju compared to Chonyi (Fishers exact test, P < 0.01). For MSP-3, this difference was significant only among 4-5 year olds. We conclude that although antibodies are commonly detected in malaria endemic populations, they may be present in concentrations that are insufficient for protection. Our results have implications for the analysis and interpretation of similar data from immuno-epidemiological studies. © 2013 The Authors.


PubMed | Center for Geographic Medicine Research
Type: Journal Article | Journal: Infection and immunity | Year: 2010

Although Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate, extensive allelic diversity may compromise its vaccine potential. We have previously shown that naturally acquired antibodies to AMA1 were associated with protection from clinical malaria in this Kenyan population. To assess the impact of allelic diversity on naturally acquired immunity, we first sequenced the ectodomain-encoding region of P. falciparum ama1 from subjects with asymptomatic, mild, and severe malaria and measured allele frequency distributions. We then measured antibodies to three allelic AMA1 proteins (AMA1_3D7, AMA1_FVO, and AMA1_HB3) and used competition enzyme-linked immunosorbent assays (ELISAs) to analyze allele-specific antibodies. Seventy-eight unique haplotypes were identified from 129 alleles sampled. No clustering of allelic haplotypes with disease severity or year of sampling was observed. Differences in nucleotide frequencies in clinical (severe plus mild malaria) versus asymptomatic infections were observed at 16 polymorphic positions. Allele frequency distributions were indicative of balancing selection, with the strongest signature being identified in domain III (Tajimas D = 2.51; P < 0.05). Antibody reactivities to each of the three allelic AMA1 proteins were highly correlated (P < 0.001 for all pairwise comparisons). Although antibodies to conserved epitopes were abundant, 48% of selected children with anti-AMA1 IgG (n = 106) had detectable reactivity to allele-specific epitopes as determined by a competition ELISA. Antibodies to both conserved and allele-specific epitopes in AMA1 may contribute to clinical protection.


PubMed | Center for Geographic Medicine Research
Type: Journal Article | Journal: International journal of environmental research and public health | Year: 2013

The aim of the study was to investigate early executive functioning in young children from 6-35 months of age. The study involved 319 randomly selected children from the community, 17 HIV exposed but uninfected children and 31 HIV infected ARV-naive children. A variation of the A-not-B task was used. While there were no group differences in total correct, perseverative errors, nor maximum error run, a significant percentage of children were unable to complete the task as a consequence of the children becoming overtly distressed or refusing to continue. In a multivariate analysis we observed that the significant predictors of non-completion were HIV exposure (both infected and exposed) and being under 24 months of age. These patterns of results indicate that future work with a broader array of tasks need to look at the association of HIV and EF tasks and potential contribution of factors such as emotion regulation, persistence and motivation on performance on EF tasks.

Loading Center for Geographic Medicine Research collaborators
Loading Center for Geographic Medicine Research collaborators