Time filter

Source Type

Engelsma K.A.,Wageningen UR Livestock Research | Engelsma K.A.,Wageningen University | Veerkamp R.F.,Wageningen UR Livestock Research | Calus M.P.L.,Wageningen UR Livestock Research | And 2 more authors.
Journal of Animal Breeding and Genetics | Year: 2011

Up to now, prioritization of animals for conservation has been mainly based on pedigree information; however, genomic information may improve prioritization. In this study, we used two Holstein populations to investigate the consequences for genetic diversity when animals are prioritized with optimal contributions based on pedigree or genomic data and whether consequences are different at the chromosomal level. Selection with genomic kinships resulted in a higher conserved diversity, but differences were small. Largest differences were found when few animals were prioritized and when pedigree errors were present. We found more differences at the chromosomal level, where selection based on genomic kinships resulted in a higher conserved diversity for most chromosomes, but for some chromosomes, pedigree-based selection resulted in a higher conserved diversity. To optimize conservation strategies, genomic information can help to improve the selection of animals for conservation in those situations where pedigree information is unreliable or absent or when we want to conserve diversity at specific genome regions. © 2011 Blackwell Verlag GmbH.

Windig J.J.,Animal Breeding and Genomics Center | Windig J.J.,Center for Genetic Resources the Netherlands | Oldenbroek K.,Center for Genetic Resources the Netherlands
Journal of Animal Breeding and Genetics | Year: 2015

Excessive inbreeding rates and small effective population sizes are an important problem in many populations of dogs. Proper genetic management of these populations can decrease the problem, and several measures are available. However, the effectiveness of these measures is not clear beforehand. Therefore, a simulation model was developed to test measures that aim to decrease the rate of inbreeding. The simulation program was used to evaluate inbreeding restriction measures in the Dutch golden retriever dog population. This population consisted of approximately 600 dams and 150 sires that produce 300 litters each year. The five most popular sires sire approximately 25% of the litters in a year. Simulations show that the small number of popular sires and their high contribution to the next generation are the main determinants of the inbreeding rates. Restricting breeding to animals with a low average relatedness to all other animals in the population was the most effective measure and decreased the rate of inbreeding per generation from 0.41 to 0.12%. Minimizing co-ancestry of parents was not effective in the long run, but decreased variation in inbreeding rates. Restricting the number of litters per sire generally decreased the generation interval because sires were replaced more quickly, once they met their restriction. In some instances, this lead to an increase in inbreeding rates because the next generations were more related. The simulation tool proved to be a powerful and educational tool for deciding which breeding restrictions to apply, and can be effective in different breeds and species as well. © 2015 Blackwell Verlag GmbH.

Discover hidden collaborations