Center for Clinical and Experimental Infection Research

Hannover, Germany

Center for Clinical and Experimental Infection Research

Hannover, Germany
SEARCH FILTERS
Time filter
Source Type

Pawar V.,Helmholtz Center for Infection Research | Komor U.,Helmholtz Center for Infection Research | Kasnitz N.,Helmholtz Center for Infection Research | Bielecki P.,Center for Clinical and Experimental Infection Research | And 6 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2015

Patients suffering from cystic fibrosis (CF) are commonly affected by chronic Pseudomonas aeruginosa biofilm infections. This is the main cause for the high disease severity. In this study, we demonstrate that P. aeruginosa is able to efficiently colonize murine solid tumors after intravenous injection and to form biofilms in this tissue. Biofilm formation was evident by electron microscopy. Such structures could not be observed with transposon mutants, which were defective in biofilm formation. Comparative transcriptional profiling of P. aeruginosa indicated physiological similarity of the bacteria in the murine tumor model and the CF lung. The efficacy of currently available antibiotics for treatment of P. aeruginosa-infected CF lungs, such as ciprofloxacin, colistin, and tobramycin, could be tested in the tumor model. We found that clinically recommended doses of these antibiotics were unable to eliminate wild-type P. aeruginosa PA14 while being effective against biofilm-defective mutants. However, colistin-tobramycin combination therapy significantly reduced the number of P. aeruginosa PA14 cells in tumors at lower concentrations. Hence, we present a versatile experimental system that is providing a platform to test approved and newly developed antibiofilm compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


PubMed | German Heart Institute Berlin, Helmholtz Center for Infection Research and Center for Clinical and Experimental Infection Research
Type: Journal Article | Journal: Antimicrobial agents and chemotherapy | Year: 2015

Patients suffering from cystic fibrosis (CF) are commonly affected by chronic Pseudomonas aeruginosa biofilm infections. This is the main cause for the high disease severity. In this study, we demonstrate that P. aeruginosa is able to efficiently colonize murine solid tumors after intravenous injection and to form biofilms in this tissue. Biofilm formation was evident by electron microscopy. Such structures could not be observed with transposon mutants, which were defective in biofilm formation. Comparative transcriptional profiling of P. aeruginosa indicated physiological similarity of the bacteria in the murine tumor model and the CF lung. The efficacy of currently available antibiotics for treatment of P. aeruginosa-infected CF lungs, such as ciprofloxacin, colistin, and tobramycin, could be tested in the tumor model. We found that clinically recommended doses of these antibiotics were unable to eliminate wild-type P. aeruginosa PA14 while being effective against biofilm-defective mutants. However, colistin-tobramycin combination therapy significantly reduced the number of P. aeruginosa PA14 cells in tumors at lower concentrations. Hence, we present a versatile experimental system that is providing a platform to test approved and newly developed antibiofilm compounds.

Loading Center for Clinical and Experimental Infection Research collaborators
Loading Center for Clinical and Experimental Infection Research collaborators