Time filter

Source Type

Wachtler M.,Institute of Photonic Technology | Wachtler M.,Friedrich - Schiller University of Jena | Guthmuller J.,Technical University of Gdansk | Kupfer S.,Friedrich - Schiller University of Jena | And 9 more authors.
Chemistry - A European Journal | Year: 2015

The hydrogen-evolving photocatalyst [(tbbpy)2Ru(tpphz)Pd(Cl)2]2+ (tbbpy=4,4′-di-tert-butyl-2,2′-bipyridine, tpphz=tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) shows excitation-wavelength-dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation-wavelength dependence of the early excited-state relaxation and the occurrence of vibrational coherences are investigated by sub-20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2Ru(tpphz)]2+ highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a 1MLCT state localized on the central part of the tpphz bridge lead to coherent wave-packet motion in the excited state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Brautigam M.,Institute of Photonic Technology | Brautigam M.,Friedrich - Schiller University of Jena | Kubel J.,Institute of Photonic Technology | Kubel J.,Friedrich - Schiller University of Jena | And 6 more authors.
Physical Chemistry Chemical Physics | Year: 2015

The dyes bis[2,2′-bipyridine][4,4′-dicarboxy-2,2′-bipyridine]ruthenium(ii) dihexafluorophosphate, [Ru(bpy)2dcb](PF6)2 (Ru1), and tris[4,4′-bis(ethylcarboxy)-2,2′-bipyridine]ruthenium(ii) dihexafluorophosphate, [Ru(dceb)3](PF6)2 (Ru2), attached to NiOx nanoparticle films were investigated using transient absorption and luminescence spectroscopy. In acetonitrile solution the dyes reveal very similar physical and chemical properties, i.e. both dyes exhibit comparable ground state and long-lived, broad excited state absorption. However, when immobilized onto a NiOx surface the photophysical properties of the two dyes differ significantly. For Ru1 luminescence is observed, which decays within 18 ns and ultrafast transient absorption measurements do not show qualitative differences from the photophysics of Ru1 in solution. In contrast to this the luminescence of photoexcited Ru2 on NiOx is efficiently quenched and the ultrafast transient absorption spectra reveal the formation of oxidized nickel centres overlaid by the absorption of the reduced dye Ru2 with a characteristic time-constant of 18 ps. These findings are attributed to the different localization of the initially photoexcited state in Ru1 and Ru2. Due to the inductive effect (-I) of the carboxylic groups, the lowest energy excited state in Ru1 is localized on the dicarboxy-bipyridine ligand, which is bound to the NiOx surface. In Ru2, on the other hand, the initially populated excited state is localized on the ester-substituted ligands, which are not bound to the semiconductor surface. Hence, the excess charge density that is abstracted from the Ru-ion in the metal-to-ligand charge-transfer transition is shifted away from the NiOx surface, which ultimately facilitates hole transfer into the semiconductor. This journal is © the Owner Societies 2015. Source

Discover hidden collaborations