Time filter

Source Type

Boston, MA, United States

Zhang R.,New York University | Bloch N.,New York University | Nguyen L.A.,University of Rochester | Kim B.,Center for Drug Discovery | Landau N.R.,New York University
PLoS ONE | Year: 2014

SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP), blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1. © 2014 Zhang et al. Source

Ryoo J.,Seoul National University | Choi J.,Seoul National University | Oh C.,Seoul National University | Kim S.,Seoul National University | And 15 more authors.
Nature Medicine | Year: 2014

The HIV-1 restriction factor SAM domain-and HD domain-containing protein 1 (SAMHD1) is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1 D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1 Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4 + T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA. © 2014 Nature America, Inc. Source

Singh S.N.,University of Connecticut | Bakshi K.,University of Kansas | Mercier R.W.,Center for Drug Discovery | Makriyannis A.,Center for Drug Discovery | Pavlopoulos S.,Center for Drug Discovery
Biochemistry | Year: 2011

Internalization of G-protein-coupled receptors is mediated by phosphorylation of the C-terminus, followed by binding with the cytosolic protein arrestin. To explore structural factors that may play a role in internalization of cannabinoid receptor 1 (CB1), we utilize a phosphorylated peptide derived from the distal C-terminus of CB1 (CB1 5P 454-473). Complexes formed between the peptide and human arrestin-2 (wt-arr2 1-418) were compared to those formed with a truncated arrestin-2 mutant (tr-arr2 1-382) using isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. The pentaphosphopeptide CB1 5P 454-473 adopts a helix-loop conformation, whether binding to full-length arrestin-2 or its truncated mutant. This structure is similar to that of a heptaphosphopeptide, mimicking the distal segment of the rhodopsin C-tail (Rh 7P 330-348), binding to visual arrestin, suggesting that this adopted structure bears functional significance. Isothermal titration calorimetry (ITC) experiments show that the CB1 5P 454-473 peptide binds to tr-arr2 1-382 with higher affinity than to the full-length wt-arr2 1-418. As the observed structure of the bound peptides is similar in either case, we attribute the increased affinity to a more exposed binding site on the N-domain of the truncated arrestin construct. The transferred NOE data from the bound phosphopeptides are used to predict a model describing the interaction with arrestin, using the data driven HADDOCK docking program. The truncation of arrestin-2 provides scope for positively charged residues in the polar core of the protein to interact with phosphates present in the loop of the CB1 5P 454-473 peptide. © 2011 American Chemical Society. Source

Vishnumurthy K.,Center for Drug Discovery | Makriyannis A.,Center for Drug Discovery
Journal of Combinatorial Chemistry | Year: 2010

Microwave-promoted novel and efficient one-step parallel synthesis of dibenzopyranones and heterocyclic analogues from bromo arylcarboxylates and o-hydroxyarylboronic acids via Suzuki-Miyaura cross coupling reaction is described. Spontaneous lactonization gave dibenzopyranones and heterocyclic analogues bearing electron-donating and -withdrawing groups on both aromatic rings in good to excellent yields. © 2010 American Chemical Society. Source

Brandariz-Nunez A.,Yeshiva University | Valle-Casuso J.C.,Yeshiva University | White T.E.,Yeshiva University | Nguyen L.,Center for Drug Discovery | And 8 more authors.
Retrovirology | Year: 2013

Background: SAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction.Results: Structural analysis of SAMHD1 and homologous HD domain proteins revealed that key hydrophobic residues Y146, Y154, L428 and Y432 stabilize the extensive dimer interface observed in the SAMHD1 crystal structure. Full-length SAMHD1 variants Y146S/Y154S and L428S/Y432S lost their ability to oligomerize tested by immunoprecipitation in mammalian cells. In agreement with these observations, the Y146S/Y154S variant of a bacterial construct expressing the HD domain of human SAMHD1 (residues 109-626) disrupted the dGTP-dependent tetramerization of SAMHD1 in vitro. Tetramerization-defective variants of the full-length SAMHD1 immunoprecipitated from mammalian cells and of the bacterially-expressed HD domain construct lost their dNTPase activity. The nuclease activity of the HD domain construct was not perturbed by the Y146S/Y154S mutations. Remarkably, oligomerization-deficient SAMHD1 variants potently restricted HIV-1 infection.Conclusions: These results suggested that SAMHD1 oligomerization is not required for the ability of the protein to block HIV-1 infection. © 2013 Brandariz-Nuñez et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations