Entity

Time filter

Source Type

Toledo, OH, United States

Hill J.W.,Center for Diabetes and Endocrine Research | Hill J.W.,University of Texas Southwestern Medical Center | Elias C.F.,University of Texas Southwestern Medical Center | Fukuda M.,University of Texas Southwestern Medical Center | And 17 more authors.
Cell Metabolism | Year: 2010

Circulating leptin and insulin convey information regarding energy stores to the central nervous system, particularly the hypothalamus. Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy balance and glucose homeostasis and express leptin and insulin receptors. However, the physiological significance of concomitant leptin and insulin action on POMC neurons remains to be established. Here, we show that mice lacking both leptin and insulin receptors in POMC neurons (Pomc-Cre, Leprflox/flox IRflox/flox mice) display systemic insulin resistance, which is distinct from the single deletion of either receptor. In addition, Pomc-Cre, Leprflox/flox IRflox/flox female mice display elevated serum testosterone levels and ovarian abnormalities, resulting in reduced fertility. We conclude that direct action of insulin and leptin on POMC neurons is required to maintain normal glucose homeostasis and reproductive function. © 2010 Elsevier Inc. All rights reserved. Source


Vazquez G.,Center for Diabetes and Endocrine Research
Biochemistry and Biophysics Reports | Year: 2015

Efforts in experimental therapeutics of atherosclerosis are mostly focused on identifying candidate targets that can be exploited in developing new strategies to reduce plaque progression, induce its regression and/or improve stability of advanced lesions. Plaque macrophages are central players in all these processes, and consequently a significant amount of research is devoted to understanding mechanisms that regulate, for instance, macrophage apoptosis, necrosis or migration. Macrophage diversity is a key feature of the macrophage population in the plaque and can impact many aspects of lesion development. Thus, searching for molecular entities that contribute to atherorelevant functions of a specific macrophage type but not others may lead to identification of targets that can be exploited in phenotype selective modulation of the lesional macrophage. This however, remains an unmet goal. In recent years several studies have revealed critical functions of micro-RNAs (miRs) in mechanisms of macrophage polarization, and a number of miRs have emerged as being specific of distinctive macrophage subsets. Not only can these miRs represent the first step towards recognition of phenotype specific targets, but they may also pave the way to reveal novel atherorelevant pathways within macrophage subsets. This article discusses some of these recent findings, speculates on their potential relevance to atherosclerosis and elaborates on the prospective use of miRs to affect the function of plaque macrophages in a phenotype selective manner. © 2015 The Authors. Source


Castaneda T.R.,Center for Diabetes and Endocrine Research | Tong J.,University of Cincinnati | Datta R.,Biomeasure | Culler M.,Biomeasure | Tschop M.H.,University of Cincinnati
Frontiers in Neuroendocrinology | Year: 2010

Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH) secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. These qualities have fostered the idea that ghrelin-based compounds may have therapeutic utility in treating malnutrition and wasting induced by various sub-acute and chronic disorders. Conversely, compounds that inhibit ghrelin action may be useful for the prevention or treatment of metabolic syndrome components such as obesity, impaired lipid metabolism or insulin resistance. In recent years, the effects of ghrelin on glucose homeostasis, memory function and gastrointestinal motility have attracted considerable amount of attention and revealed novel therapeutic targets in treating a wide range of pathologic conditions. Furthermore, discovery of ghrelin O-Acyltransferase has also opened new research opportunities that could lead to major understanding of ghrelin physiology. This review summarizes the current knowledge on ghrelin synthesis, secretion, mechanism of action and biological functions with an additional focus on potential for ghrelin-based pharmacotherapies. © 2009 Elsevier Inc. All rights reserved. Source


Qiu X.,Center for Diabetes and Endocrine Research | Dowling A.R.,Center for Diabetes and Endocrine Research | Marino J.S.,Center for Diabetes and Endocrine Research | Faulkner L.D.,Center for Diabetes and Endocrine Research | And 5 more authors.
Endocrinology | Year: 2013

Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR δKiss mice). IRδKiss females showed a delay in vaginal opening and in first estrus, whereas IRδKiss males also exhibited late sexual maturation. Correspondingly, LH levels in IR δKiss mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states. Copyright © 2013 by The Endocrine Society. Source


Heinrich G.,Center for Diabetes and Endocrine Research | Russo L.,Center for Diabetes and Endocrine Research | Castaneda T.R.,Center for Diabetes and Endocrine Research | Pfeiffer V.,University of Wurzburg | And 9 more authors.
Journal of Biological Chemistry | Year: 2016

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1-/-) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1-/- mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1-/- mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations