Center for Developmental Neurobiology

London, United Kingdom

Center for Developmental Neurobiology

London, United Kingdom

Time filter

Source Type

Lee Y.-B.,King's College London | Chen H.-J.,King's College London | Peres J.,Center for Developmental Neurobiology | Gomez-Deza J.,King's College London | And 18 more authors.
Cell Reports | Year: 2013

The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA focihave been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


PubMed | Center for Developmental Neurobiology, Jozef Stefan Institute, University of Cambridge, University College London and King's College London
Type: Journal Article | Journal: Cell reports | Year: 2013

The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA focihave been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38 and 72 G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Gordon-Weeks P.R.,Center for Developmental Neurobiology | Fournier A.E.,Montreal Neurological Institute
Journal of Neurochemistry | Year: 2014

During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.


Formstone C.J.,Center for Developmental Neurobiology
Advances in Experimental Medicine and Biology | Year: 2010

The 7TM-Cadherins, Celsr/Flamingo/Starry night, represent a unique subgroup of adhesion-GPCRs containing atypical cadherin repeats, capable of homophilic interaction, linked to the archetypal adhesion-GPCR seven-transmembrane domain. Studies in Drosophila provided a first glimpse of their functional properties, most notably in the regulation of planar cell polarity (PCP) and in the formation of neural architecture. Many of the developmental functions identified in flies are conserved in vertebrates with PCP predicted to influence the development of multiple organ systems. Details of the molecular and cellular functions of 7TM-Cadherins are slowly emerging but many questions remain unanswered. Here the developmental roles of 7TM-Cadherins are discussed and future challenges in understanding their molecular and cellular roles are explored. © 2010 Landes Bioscience and Springer Science+Business Media, LLC.

Loading Center for Developmental Neurobiology collaborators
Loading Center for Developmental Neurobiology collaborators