Time filter

Source Type

Bakelli Y.,Applied Research Unit on Renewable Energies URAER | Hadj Arab A.,Center for Development of Renewable Energies (CDER) | Azoui B.,University of Batna
Solar Energy | Year: 2011

This paper recommends an optimal sizing model, to optimize the capacity sizes of different components of photovoltaic water pumping system (PWPS) using water tank storage. The recommended model takes into account the submodels of the pumping system and uses two optimization criteria, the loss of power supply probability (LPSP) concept for the reliability and the life cycle cost (LCC) for the economic evaluation. With this presented model, the sizing optimization of photovoltaic pumping system can be achieved technically and economically according to the system reliability requirements. The methodology adopted proposes various procedures based on the water consumption profiles, total head, tank capacity and photovoltaic array peak power. A case study is conducted to analyze one photovoltaic pumping project, which is designed to supply drinking water in remote and scattered small villages situated in Ghardaia, Algeria (32°29′N, 3°40′E, 450. m). © 2010 Elsevier Ltd.

Larbi S.,Polytechnic School of Algiers | Bouhdjar A.,Center for Development of Renewable Energies (CDER) | Chergui T.,Applied Research Unit on Renewable Energies URAER
Renewable and Sustainable Energy Reviews | Year: 2010

In this paper, we present the performance analysis of a solar chimney power plant expected to provide the remote villages located in Algerian southwestern region with electric power. Solar energy and the psychometric state of the air in the south of Algeria are important to encourage the full development of solar chimney power plant for the thermal and electrical production of energy for various uses. We are interested in Adrar where solar radiation is better than other areas of Algeria. The obtained results show that the solar chimney power plant can produce from 140 to 200 kW of electricity on a site like Adrar during the year, according to an estimate made on the monthly average of sunning. This production is sufficient for the needs of the isolated areas. © 2009 Elsevier Ltd. All rights reserved.

Bouzidi B.,Center for Development of Renewable Energies (CDER)
Renewable and Sustainable Energy Reviews | Year: 2011

The availability of water and the ability to access are the key questions arising in developing countries including Algeria. Indeed, due to lack of electricity, the Saharan regions representing 80% of the country are facing major problems to cover drinking water needs. Paradoxically, there is in some of these areas an important quantity of groundwater at shallow depths. On the other hand, Algeria has considerable renewable energy resources, particularly solar and wind energy options that are now relevant solutions to this problem. To date, few facilities specifically photovoltaic were conducted throughout the national territory (Saharan regions and highlands). However vandalism (destruction, robbery, etc.) did not spare these facilities particularly in border areas, such Adrar, and therefore prospective purchasers of such systems are discouraged. A new strategy to deal these actions became necessary for the regions most affected. In this context, we propose to study and compare the two options for solar and wind water pumping applications in the Adrar region. Because it has become necessary that the energy issue arises in new terms. It is proposed now to ask, taking into account the circumstances, which form of energy would be appropriate for what and for which ends. In other words, we will essentially develop a new spirit, a new attitude that would be based on a determination on a case by case basis, of the appropriate energy resource. This will allow to have another vision of the use and the viability of renewable energies. © 2011 Elsevier Ltd. All rights reserved.

Amrouche B.,Center for Development of Renewable Energies (CDER) | Guessoum A.,Blida University | Belhamel M.,Center for Development of Renewable Energies (CDER)
Applied Energy | Year: 2012

This paper proposes a simple behavioural model for photovoltaic modules. This model can be used to characterise current-voltage and power-voltage outputs of photovoltaic modules as a function of solar module temperature and solar radiation intensity. Such a model cannot only serve as a tool to study the I-V curve and its maximum power point characteristics but also to design photovoltaic power systems and power converters used for PV applications. It can also be used for performance rating. This model has first been developed to study the maximum power point characteristics by exploring the existing similarity between the photovoltaic module I-V characteristic and the step response of a first-order system. It has the advantage to use only parameters that are available on the data sheet. To construct the proposed model, measured I-V curves at different working conditions (solar radiation intensity and ambient temperature) were used, then other I-V characteristics corresponding to different working conditions have been used to validate it. The obtained results show a high degree of correspondence between the real outdoor measured I-V characteristics and those given by the developed model. © 2011 Elsevier Ltd.

Agency: Cordis | Branch: FP7 | Program: CP-SICA | Phase: ENERGY.2013.2.9.1 | Award Amount: 7.48M | Year: 2013

REELCOOP stands for REnewable ELectricity COOPeration, and will address 5 areas: photovoltaics (PV), concentrated solar power (CSP), solar thermal (ST), bioenergy and grid integration. REELCOOP will develop decentralised (distributed) building integrated PV systems and ST/biomass micro-cogeneration systems, as well as centralised generation of electricity in hybrid solar/biomass power plants. This is in accordance with the EU SET-Plan approach of developing a European electricity grid able to integrate renewable and decentralised energy sources. The overall aim of REELCOOP will be to significantly enhance research cooperation and knowledge creation on renewable electricity generation, involving Mediterranean partner countries (MPC), while at the same time developing and testing new renewable electricity generation systems. The proposed systems will be developed in European organisations with collaboration of MPC partners, and tested under real-life operating conditions in the MENA region, thus establishing a cooperation network amongst partner countries. Three novel prototype systems will be developed and tested, being representative of both micro (distributed) and large (centralised) scale approaches to electricity generation: prototypes 1 and 2 are representative of typical micro-generation systems, while prototype 3 is representative of a large scale power plant on a reduced scale. The development of the 3 prototypes will also contribute to bring to the market energy efficient, renewable electricity generation systems. The environmental sustainability and economics of the prototype systems will be assessed, and the results obtained will be disseminated to industry and research, as proof-of-concept of renewable electricity generation solutions. Grid integration will also be assessed. The prototype systems will have a great potential for exploitation/commercialization. The commercialisation of the systems will bring economic and environmental benefits to the EU.

Discover hidden collaborations