Center for Coastal Fisheries and Habitat Research

Oak Island, NC, United States

Center for Coastal Fisheries and Habitat Research

Oak Island, NC, United States

Time filter

Source Type

Short F.T.,University of New Hampshire | Polidoro B.,Old Dominion University | Livingstone S.R.,Old Dominion University | Carpenter K.E.,Old Dominion University | And 22 more authors.
Biological Conservation | Year: 2011

Seagrasses, a functional group of marine flowering plants rooted in the world's coastal oceans, support marine food webs and provide essential habitat for many coastal species, playing a critical role in the equilibrium of coastal ecosystems and human livelihoods. For the first time, the probability of extinction is determined for the world's seagrass species under the Categories and Criteria of the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. Several studies have indicated that seagrass habitat is declining worldwide. Our focus is to determine the risk of extinction for individual seagrass species, a 4-year process involving seagrass experts internationally, compilation of data on species' status, populations, and distribution, and review of the biology and ecology of each of the world's seagrass species. Ten seagrass species are at elevated risk of extinction (14% of all seagrass species), with three species qualifying as Endangered. Seagrass species loss and degradation of seagrass biodiversity will have serious repercussions for marine biodiversity and the human populations that depend upon the resources and ecosystem services that seagrasses provide. © 2011 Elsevier Ltd.


PubMed | Winter Street, Center for Coastal Fisheries and Habitat Research and Smithsonian Environmental Research Center
Type: Journal Article | Journal: Marine pollution bulletin | Year: 2014

Using a calibrated bio-optical model we determined that the optical water quality conditions in several nitrogen-impaired embayments and in one unimpaired system were within the range of values known to support eelgrass growth. We also used the model to identify a range of light requirements for eelgrass (Zostera marina). Higher eelgrass light requirements, expressed as a percentage of surface-incident irradiance, corresponded with higher sediment organic matter content. These results corroborated findings by previous studies which indicate a generalized relationship: seagrasses growing in turbid conditions with poorer water and sediment quality have higher light requirements than those growing in less degraded conditions. The mechanistic reason for the variation in light requirements is still not completely explained and cannot be attributed to a single independent variable. Varying light requirement have important implications for eelgrass protection and should be considered when setting restoration targets for eelgrass in water quality and nitrogen remediation programs.


Fourqurean J.W.,Florida International University | Manuel S.A.,Bermuda Ministry of Health | Coates K.A.,Bermuda Ministry of Health | Kenworthy W.J.,Center for Coastal Fisheries and Habitat Research | And 2 more authors.
Biogeosciences | Year: 2015

Striking spatial patterns in stable isotope ratios (isoscapes) and elemental ratios (stoichioscapes) of seagrass leaves and the water column nutrients indicate general P-limitation of both water column and benthic primary productivity on the Bermuda Platform, and they highlight the role of the Bermuda Islands as a source of N and P. We found consistent differences among the four seagrass species (Syringodium filiforme, Thalassia testudinum, Halodule sp. and Halophila decipiens) in the N, P, δ13C and δ15N of leaf tissues. The δ15N of seagrass leaves was especially variable, with values from -10.1 to 8.8 %, greatly expanding the reported range of values for all seagrass species globally. Spatial patterns from both the water column and the seagrass leaves indicated that P availability was higher near shore, and δ15N values suggest this was likely a result of human waste disposal. Spatially contiguous areas of extremely depleted seagrass 15N suggest unique N sources and cycling compared to other seagrass-dominated environments. Seagrass N : P values were not as far from the stoichiometric balance between N and P availability as in the water column, and there were no strong relationships between the water column N : P and the seagrass N : P. Such isoscapes and stoichioscapes provide valuable ecogeochemical tools to infer ecosystem processes as well as provide information that can inform food web and animal movement studies. © Author(s) 2015.


Able K.W.,Rutgers University | Sullivan M.C.,The Richard Stockton College of New Jersey | Hare J.A.,National Oceanic and Atmospheric Administration | Bath-Martin G.,National Oceanic and Atmospheric Administration | And 2 more authors.
Fishery Bulletin | Year: 2011

Summer flounder (Paralichthys dentatus) is one of the most economically and ecologically important estuarine-dependent species in the northeastern United States. The status of the population is currently a topic of controversy. Our goal was to assess the potential of using larval abundance at ingress as another fishery independent measure of spawning stock biomass or recruitment. Weekly long-term ichthyoplankton time series were analyzed from Little Egg Inlet, New Jersey (1989-2006) and Beaufort Inlet, North Carolina (1986-2004). Mean size-at-ingress and stage were similar between sites, whereas timing of ingress and abundance at ingress were not similar. Ingress primarily occurred during the fall at Little Egg Inlet and the winter at Beaufort Inlet. These findings agree with those from earlier studies in which at least two stocks (one north and one south of Cape Hatteras) were identified with different spawning periods. Larval abundance at Little Egg Inlet has increased since the late 1990s and most individuals now enter the estuary earlier during the season of ingress. Abundance at Little Egg Inlet was correlated with an increase in spawning stock biomass, presumably because spawning by larger, more abundant fish during the late 1990s and early 2000s provided increased larval supply, at least in some years. Larval abundance at ingress at Beaufort Inlet was not correlated with spawning stock biomass or with larval abundance at ingress at Little Egg Inlet, further supporting the hypothesis of at least two stocks. Larval abundance at Little Egg Inlet could be used as a fisheryindependent index of spawning stock size north of Cape Hatteras in future stock assessments. Larval occurrence at Beaufort Inlet may provide information on the abundance of the stock south of Cape Hatteras, but additional stock assessment work is required.


Price C.,Center for Coastal Fisheries and Habitat Research | Black K.D.,Scottish Association for Marine Science | Hargrave B.T.,561 Balmy Beach Road | Morris J.A.,Center for Coastal Fisheries and Habitat Research
Aquaculture Environment Interactions | Year: 2014

Increasing human population and reliance on aquaculture for seafood will lead to expansion of the industry in the open ocean. To guide environmentally sustainable expansion, coastal stakeholders require tools to evaluate the risks that marine aquaculture poses and to craft science-based policies and practices which safeguard marine ecosystems. We summarized current knowledge regarding dissolved nutrient loading from marine fish farms around the world, direct impacts on water quality and secondary impacts on primary production, including formation of harmful algal blooms. We found that modern operating conditions have minimized impacts of individual fish farms on marine water quality. Effects on dissolved oxygen and turbidity are largely eliminated through better management. Nutrient enrichment of the near-field water column is not detectable beyond 100 m of a farm when formulated feeds are used, and feed waste is minimized. We highlight the role of siting fish farms in deep waters with sufficient current to disperse nutrients and prevent water quality impacts. We extensively discuss the potential for advances in integrated multi-trophic aquaculture (IMTA) to assimilate waste nutrients. Although modern farm management practices have decreased environmental effects of marine fish farms, we conclude that questions remain about the additive impacts of discharge from multiple farms potentially leading to increased primary production and eutrophication. Research results on secondary effects upon primary production are highly variable. In some locations, nutrient loading has little or no trophic impact, while at others there is evidence that nutrients are assimilated by primary producers. Research on far-field and regional processes, especially in intensively farmed areas and over longer time scales, will refine understanding of the full ecological role of fish farms in marine environments. © The authors 2015.


Costello C.T.,Winter Street | Kenworthy W.J.,Center for Coastal Fisheries and Habitat Research
Estuaries and Coasts | Year: 2011

In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y-1 in Boston Harbor to declines as large as -33% y-1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from -0.06% y-1 to as high as -14.81% y-1. The median rate of decline by region ranged from -2.21% y-1 to -3.51% y-1 and was slightly less than the recently reported global rate of decline for seagrasses (-3.7% y-1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers. © 2011 Coastal and Estuarine Research Federation.


Slone D.H.,U.S. Geological Survey | Reid J.P.,U.S. Geological Survey | Kenworthy W.J.,Center for Coastal Fisheries and Habitat Research
Marine Ecology Progress Series | Year: 2013

Turbid water conditions make the delineation and characterization of benthic habitats difficult by traditional in situ and remote sensing methods. Here, we develop and validate modeling and sampling methodology for detecting and characterizing seagrass beds by analyzing GPS telemetry records from radio-tagged manatees. Between October 2002 and October 2005, 14 manatees were tracked in the Ten Thousand Islands (TTI) in southwest Florida (USA) using Global Positioning System (GPS) tags. High density manatee use areas were found to occur off each island facing the open, nearshore waters of the Gulf of Mexico. We implemented a spatially stratified random sampling plan and used a camera-based sampling technique to observe and record bottom observations of seagrass and macroalgae presence and abundance. Five species of seagrass were identified in our study area: Halodule wrightii, Thalassia testudinum, Syringodium filiforme, Halophila engelmannii, and Halophila decipiens. A Bayesian model was developed to choose and parameterize a spatial process function that would describe the observed patterns of seagrass and macroalgae. The seagrasses were found in depths <2 m and in the higher manatee use strata, whereas macroalgae was found at moderate densities at all sampled depths and manatee use strata. The manatee spatial data showed a strong association with seagrass beds, a relationship that increased seagrass sampling efficiency. Our camera-based field sampling proved to be effective for assessing seagrass density and spatial coverage under turbid water conditions, and would be an effective monitoring tool to detect changes in seagrass beds. Copyright © 2013 Inter-Research.


Trenkel V.M.,French Research Institute for Exploitation of the Sea | Ressler P.H.,National Oceanic and Atmospheric Administration | Jech M.,National Oceanic and Atmospheric Administration | Giannoulaki M.,Hellenic Center for Marine Research | Taylor C.,Center for Coastal Fisheries and Habitat Research
Marine Ecology Progress Series | Year: 2011

Ecosystem-based management (EBM) requires more extensive information than singlespecies management. Active underwater acoustic methods provide a means of collecting a wealth of ecosystem information with high space-time resolution. Worldwide fisheries institutes and agencies are carrying out regular acoustic surveys covering many marine shelf ecosystems, but these data are underutilized. In addition, more and more acoustic data collected by vessels of opportunity are becoming available. To encourage their use for EBM, we provide a brief introduction to acoustic and complementary data collection methods in the water column, and review current and potential contributions to monitoring population abundance and biomass, spatial distributions, and predator-prey relationships. Further development of acoustics-derived indicators is needed. We review and propose indicators for assessing and monitoring zooplankton, population dynamics of fish and other nekton, and changes in diversity and food-web functioning. Acoustic methods have the potential to make a strong contribution to EBM. Evaluation of new indicators and suitable reference points in different ecosystems are the current challenges. © Inter-Research 2011.


Manuel S.A.,P.O. Box FL | Coates K.A.,P.O. Box FL | Kenworthy W.J.,Center for Coastal Fisheries and Habitat Research | Fourqurean J.W.,Florida International University
Marine Environmental Research | Year: 2013

Surveys were undertaken on the shallow Bermuda marine platform between 2006 and 2008 to provide a baseline of the distribution, condition and environmental characteristics of benthic communities. Bermuda is located in temperate latitudes but coral reefs, tropical seagrasses and calcareous green algae are common in the shallow waters of the platform. The dominant organisms of these communities are all living at or near their northern latitudinal range limits in the Atlantic Ocean. Among the major benthic autotrophs surveyed, seagrasses were most restricted by light availability. We found that the relatively slow-growing and long-lived seagrass Thalassia testudinum is restricted to habitats with much higher light availability than in the tropical locations where this species is commonly found. In contrast, the faster growing tropical seagrasses in Bermuda, Syringodium filiforme, Halodule sp. and Halophila decipiens, had similar ecological compensation depths (ECD) as in tropical locations. Increasing sea surface temperatures, concomitant with global climate change, may either drive or allow the poleward extensions of the ranges of such tropical species. However, due to latitudinal light limitations at least one abundant and common tropical autotroph, T.testudinum, is able to occupy only shallower depths at the more temperate latitudes of Bermuda. We hypothesize that the poleward shift of seagrass species ranges would be accompanied by restrictions to even shallower depths of T.testudinum and by very different seagrass community structures than in tropical locations. © 2013 Elsevier Ltd.


Jarvis J.C.,Virginia Institute of Marine Science | Jarvis J.C.,The Richard Stockton College of New Jersey | Moore K.A.,Virginia Institute of Marine Science | Kenworthy W.J.,Center for Coastal Fisheries and Habitat Research
Marine Ecology Progress Series | Year: 2012

Eelgrass Zostera marina L. populations located near the species southern limit in the western North Atlantic were assessed monthly from July 2007 through November 2008. We identified (1) dominant life history strategies and local environmental conditions in southern Z. marina populations, (2) quantified differences in reproductive phenology between populations and different local environmental conditions, and (3) compared reproductive strategies to established annual and perennial life history paradigms. Observed populations expressed both life history strategies with one Z. marina population completely losing aboveground biomass and reestablishing from seeds (annual model) while another population retained aboveground biomass throughout the year (perennial model). A third life history strategy, characterized here as a mixed-annual population, was also observed after some seedlings were found to reproduce both sexually and asexually during their first year of growth thereby not conforming to any currently established life history paradigm. Development of multiple life history strategies within this region may be in response to stressful summer water temperatures associated with the southern edge of the species' range. We suggest that neither annual nor perennial life history strategies always provide a superior mechanism for population persistence as perennial populations can be susceptible to multiple consecutive years of stress, and annual populations are unable to fully exploit available resources throughout much of the year. The mixed-annual strategy observed here represents another possible life history model which may provide the mechanism necessary for Z. marina populations to persist during times of environmental transition. © Inter-Research 2012.

Loading Center for Coastal Fisheries and Habitat Research collaborators
Loading Center for Coastal Fisheries and Habitat Research collaborators