Entity

Time filter

Source Type


Asai S.,Childrens Hospital of Philadelphia | Otsuru S.,Childrens Hospital of Philadelphia | Otsuru S.,Center for Childhood Cancer and Blood Diseases | Candela M.E.,Childrens Hospital of Philadelphia | And 9 more authors.
Stem Cells | Year: 2014

To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair. Stem Cells 2014;32:3266-3277 © 2014 AlphaMed Press.


Geier B.,Center for Childhood Cancer and Blood Diseases | Kurmashev D.,University of Texas Health Science Center at San Antonio | Kurmasheva R.T.,University of Texas Health Science Center at San Antonio | Houghton P.J.,University of Texas Health Science Center at San Antonio
Frontiers in Oncology | Year: 2015

Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and "omics" approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents. © 2015 Geier, Kurmashev, Kurmasheva and Houghton.


Jousma E.,Childrens Hospital Medical Center | Rizvi T.A.,Childrens Hospital Medical Center | Wu J.,Childrens Hospital Medical Center | Janhofer D.,U.S. National Cancer Institute | And 6 more authors.
Pediatric Blood and Cancer | Year: 2015

Background: Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model. Procedures: We studied effects of MEK inhibition using 1.5mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 flox/flox; Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5mg/kg/day doses of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints. Results: Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage. Conclusions: Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design. Pediatr Blood Cancer 2015;62:1709-1716. © 2015 Wiley Periodicals, Inc.


Shen C.,Center for Childhood Cancer and Blood Diseases | Oswald D.,Center for Childhood Cancer and Blood Diseases | Phelps D.,Center for Childhood Cancer and Blood Diseases | Cam H.,Center for Childhood Cancer and Blood Diseases | And 3 more authors.
Cancer Research | Year: 2013

Deregulation of the mTOR pathway is closely associated with tumorigenesis. Accordingly, mTOR inhibitors such as rapamycin and mTOR-selective kinase inhibitors have been tested as cancer therapeutic agents. Inhibition of mTOR results in sensitization to DNA-damaging agents; however, the molecular mechanism is not well understood. We found that an mTOR-selective kinase inhibitor, AZD8055, significantly enhanced sensitivity of a pediatric rhabdomyosarcoma xenograft to radiotherapy and sensitized rhabdomyosarcoma cells to the DNA interstrand cross-linker (ICL) melphalan. Sensitization correlated with drug-induced downregulation of a key component of the Fanconi anemia pathway, FANCD2 through mTOR regulation of FANCD2 gene transcripts via mTORC1-S6K1. Importantly, we show that FANCD2 is required for the proper activation of ATM-Chk2 checkpoint in response to ICL and that mTOR signaling promotes ICL-induced ATM-Chk2 checkpoint activation by sustaining FANCD2. In FANCD2-deficient lymphoblasts, FANCD2 is essential to suppress endogenous and induced DNA damage, and FANCD2-deficient cells showed impaired ATM-Chk2 and ATR-Chk1 activation, which was rescued by reintroduction of wild-type FANCD2. Pharmacologic inhibition of PI3K-mTOR-AKT pathway in Rh30 rhabdomyosarcoma cells attenuated ICL-induced activation of ATM, accompanied with the decrease of FANCD2. These data suggest that the mTOR pathway may promote the repair of DNA double-strand breaks by sustaining FANCD2 and provide a novel mechanism of how the Fanconi anemia pathway modulates DNA damage response and repair. © 2013 American Association for Cancer Research.


Niikura Y.,Center for Childhood Cancer and Blood Diseases | Kitagawa K.,Center for Childhood Cancer and Blood Diseases
Journal of Visualized Experiments | Year: 2016

“Centromeres” and “kinetochores” refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins. 1-4 Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromerekinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells. © 2016 Journal of Visualized Experiments.

Discover hidden collaborations