Sun City Center, United States
Sun City Center, United States

Time filter

Source Type

Boyette L.B.,U.S. National Institutes of Health | Boyette L.B.,Center for Cellular and Molecular Engineering | Boyette L.B.,McGowan Institute for Regenerative Medicine | Creasey O.A.,Center for Cellular and Molecular Engineering | And 9 more authors.
Stem Cells Translational Medicine | Year: 2014

Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O2 consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesisassociated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue. © AlphaMed Press.


Lozito T.P.,Center for Cellular and Molecular Engineering | Alexander P.G.,Center for Cellular and Molecular Engineering | Lin H.,Center for Cellular and Molecular Engineering | Gottardi R.,Center for Cellular and Molecular Engineering | And 3 more authors.
Stem Cell Research and Therapy | Year: 2013

Osteoarthritis (OA), the most prevalent form of arthritis, affects up to 15% of the adult population and is principally characterized by degeneration of the articular cartilage component of the joint, often with accompanying subchondral bone lesions. Understanding the mechanisms underlying the pathogenesis of OA is important for the rational development of disease-modifying OA drugs. While most studies on OA have focused on the investigation of either the cartilage or the bone component of the articular joint, the osteochondral complex represents a more physiologically relevant target because the disease ultimately is a disorder of osteochondral integrity and function. In our current investigation, we are constructing an in vitro three-dimensional microsystem that models the structure and biology of the osteochondral complex of the articular joint. Osteogenic and chondrogenic tissue components are produced using adult human mesenchymal stem cells derived from bone marrow and adipose seeded within biomaterial scaffolds photostereolithographically fabricated with defined internal architecture. A three-dimensional-printed, perfusion-ready container platform with dimensions to fit into a 96-well culture plate format is designed to house and maintain the osteochondral microsystem that has the following features: an anatomic cartilage/bone biphasic structure with a functional interface; all tissue components derived from a single adult mesenchymal stem cell source to eliminate possible age/tissue-type incompatibility; individual compartments to constitute separate microenvironment for the synovial and osseous components; accessible individual compartments that may be controlled and regulated via the introduction of bioactive agents or candidate effector cells, and tissue/medium sampling and compositional assays; and compatibility with the application of mechanical load and perturbation. The consequences of mechanical injury, exposure to inflammatory cytokines, and compromised bone quality on degenerative changes in the cartilage component are examined in the osteochondral microsystem as a first step towards its eventual application as an improved and high-throughput in vitro model for prediction of efficacy, safety, bioavailability, and toxicology outcomes for candidate disease-modifying OA drugs. © 2013 BioMed Central Ltd.


PubMed | Center for Cellular and Molecular Engineering and University of Pittsburgh
Type: | Journal: Journal of tissue engineering and regenerative medicine | Year: 2017

Traumatized muscle, such as that debrided from blast injury sites, is considered a promising and convenient tissue source for multipotent progenitor cells (MPCs), a population of adult mesenchymal stem cell (MSC)-like cells. The present study aimed to assess the regenerative therapeutic potential of human traumatized muscle-derived MPCs, e.g., for injury repair in the blast-traumatized extremity, by comparing their pro-angiogenic potential in vitro and capillary recruitment activity in vivo to those of MSCs isolated from human bone marrow, a widely-used tissue source. MPCs were tested for their direct and indirect effects on human microvascular endothelial cells (ECs) in vitro. The findings reported here showed that MPC-conditioned culture medium (MPC-CM), like MSC-CM, promoted EC-cord network branching. Silent (si)RNA-mediated silencing of vascular endothelial growth factor-A (VEGF-A) expression in MPCs attenuated this effect. In a chick embryonic chorioallantoic membrane in vivo angiogenesis assay, MPCs encapsulated in photocrosslinked gelatin scaffold recruited blood vessels more efficiently than either MSCs or human foreskin fibroblasts. Together, these findings support the potential application of traumatized muscle-derived MPCs in cell-based regenerative medicine therapies as a result of their influence on EC organization. Copyright 2017 John Wiley & Sons, Ltd.

Loading Center for Cellular and Molecular Engineering collaborators
Loading Center for Cellular and Molecular Engineering collaborators