Center for Cardiovascular and Respiratory science

Sun City Center, United States

Center for Cardiovascular and Respiratory science

Sun City Center, United States
Time filter
Source Type

Alway S.E.,West Virginia University | Alway S.E.,Center for Cardiovascular and Respiratory science | Mohamed J.S.,West Virginia University | Mohamed J.S.,Center for Cardiovascular and Respiratory science | And 2 more authors.
Exercise and Sport Sciences Reviews | Year: 2017

We present the hypothesis that an accumulation of dysfunctional mitochondria initiates a signaling cascade leading to motor neuron and muscle fiber death and culminating in sarcopenia. Interactions between neural and muscle cells that contain dysfunctional mitochondria exacerbate sarcopenia. Preventing sarcopenia will require identifying mitochondrial sources of dysfunction that are reversible. Copyright © 2017 by the American College of Sports Medicine.

Dabkowski E.R.,West Virginia University | Dabkowski E.R.,Center for Cardiovascular and Respiratory science | Baseler W.A.,West Virginia University | Baseler W.A.,Center for Cardiovascular and Respiratory science | And 8 more authors.
American Journal of Physiology - Heart and Circulatory Physiology | Year: 2010

Cardiac complications and heart failure are the leading cause of death in type 2 diabetic patients. Mitochondrial dysfunction is central in the pathogenesis of the type 2 diabetic heart. However, it is unclear whether this dysfunction is specific for a particular subcellular region. The purpose of this study was to determine whether mitochondrial dysfunction in the type 2 diabetic heart is specific to a spatially distinct subset of mitochondria. We investigated mitochondrial morphology, function, and proteomic composition of subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) in 18-wk-old db/db mice. Oxidative damage was assessed in subpopulations through the measurement of lipid peroxidation byproducts and nitrotyrosine residues. Proteomic profiles and posttranslational modifications were assessed in mitochondrial subpopulations using iTRAQ and multi-dimensional protein identification technologies, respectively. SSM from db/db hearts had altered morphology, including a decrease in size and internal complexity, whereas db/db IFM were increased in internal complexity. Db/db SSM displayed decreased state 3 respiration rates, electron transport chain activities, ATP synthase activities, and mitochondrial membrane potential and increased oxidative damage, with no change in IFM. Proteomic assessment revealed a greater impact on db/db SSM compared with db/db IFM. Inner mitochondrial membrane proteins, including electron transport chain, ATP synthesis, and mitochondrial protein import machinery, were predominantly decreased. We provide evidence that mitochondrial dysfunction in the type 2 diabetic heart is associated with a specific subcellular locale. Furthermore, mitochondrial morphological and functional indexes are impacted differently during type 2 diabetic insult and may result from the modulation of spatially distinct mitochondrial proteomes. Copyright © 2010 the American Physiological Society.

Baseler W.A.,West Virginia University | Baseler W.A.,Center for Cardiovascular and Respiratory science | Dabkowski E.R.,West Virginia University | Dabkowski E.R.,Center for Cardiovascular and Respiratory science | And 10 more authors.
American Journal of Physiology - Regulatory Integrative and Comparative Physiology | Year: 2011

Diabetic cardiomyopathy is associated with increased risk of heart failure in type 1 diabetic patients. Mitochondrial dysfunction is suggested as an underlying contributor to diabetic cardiomyopathy. Cardiac mitochondria are characterized by subcellular spatial locale, including mitochondria located beneath the sarcolemma, subsarcolemmal mitochondria (SSM), and mitochondria situated between the myofibrils, interfibrillar mitochondria (IFM). The goal of this study was to determine whether type 1 diabetic insult in the heart influences proteomic make-up of spatially distinct mitochondrial subpopulations and to evaluate the role of nuclear encoded mitochondrial protein import. Utilizing multiple proteomic approaches (iTRAQ and two-dimensional-differential in-gel electrophoresis), IFM proteomic make-up was impacted by type 1 diabetes mellitus to a greater extent than SSM, as evidenced by decreased abundance of fatty acid oxidation and electron transport chain proteins. Mitochondrial phosphate carrier and adenine nucleotide translocator, as well as inner membrane translocases, were decreased in the diabetic IFM (P < 0.05 for both). Mitofilin, a protein involved in cristae morphology, was diminished in the diabetic IFM (P < 0.05). Posttranslational modifications, including oxidations and deamidations, were most prevalent in the diabetic IFM. Mitochondrial heat shock protein 70 (mtHsp70) was significantly decreased in diabetic IFM (P < 0.05). Mitochondrial protein import was decreased in the diabetic IFM with no change in the diabetic SSM (P < 0.05). Taken together, these results indicate that mitochondrial proteomic alterations in the type 1 diabetic heart are more pronounced in the IFM. Further, proteomic alterations are associated with nuclear encoded mitochondrial protein import dysfunction and loss of an essential mitochondrial protein import constituent, mtHsp70, implicating this process in the pathogenesis of the diabetic heart. Copyright © 2011 the American Physiological Society.

PubMed | Center for Cardiovascular and Respiratory science and West Virginia University
Type: | Journal: Mitochondrion | Year: 2015

Interleukin-15 receptor alpha knockout (IL15RKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15R as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

PubMed | Chinese Culture University, Center for Cardiovascular and Respiratory science and West Virginia University
Type: Journal Article | Journal: American journal of physiology. Heart and circulatory physiology | Year: 2015

Leptin has been proposed to modulate cardiac electrical properties via -adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 g/kg) decreased resting heart rate; at high doses (150-300 g/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 g/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of -adrenergic receptor stimulation. During inhibition of -adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

Gallo V.,London School of Hygiene and Tropical Medicine | Gallo V.,Imperial College London | Leonardi G.,London School of Hygiene and Tropical Medicine | Genser B.,University of Heidelberg | And 6 more authors.
Environmental Health Perspectives | Year: 2012

Background: Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) persist in the environment and are found in relatively high concentrations in animal livers. Studies in humans have reported inconsistent associations between PFOA and liver enzymes. Objectives: We examined the cross-sectional association between serum PFOA and PFOS concentrations with markers of liver function in adults. Methods: The C8 Health Project collected data on 69,030 persons; of these, a total of 47,092 adults were included in the present analysis. Linear regression models were fitted for natural log (ln)-transformed values of alanine transaminase (ALT), γ-glutamyltransferase (GGT), and direct bilirubin on PFOA, PFOS, and potential confounders. Logistic regression models were fitted comparing deciles of PFOA or PFOS in relation to high biomarker levels. A multilevel analysis comparing the evidence for association of PFOA with liver function at the individual level within water districts to that at the population level between water districts was also performed. Results: ln-PFOA and ln-PFOS were associated with ln-ALT in linear regression models [PFOA: coefficient, 0.022; 95% confidence interval (CI): 0.018, 0.025; PFOS: coefficient, 0.020; 95% CI: 0.014, 0.026] and with raised ALT in logistic regression models [with a steady increase in the odds ratio (OR) estimates across deciles of PFOA and PFOS; PFOA: OR = 1.10; 95% CI: 1.07, 1.13; PFOS: OR = 1.13; 95% CI: 1.07, 1.18]. There was less consistent evidence of an association of PFOA and GGT or bilirubin. The relationship with bilirubin appears to rise at low levels of PFOA and to fall again at higher levels. Conclusions: These results show a positive association between PFOA and PFOS concentrations and serum ALT level, a marker of hepatocellular damage.

Alway S.E.,West Virginia University | Alway S.E.,Clinical Translational Science Institute | Alway S.E.,Center for Cardiovascular and Respiratory science | Myers M.J.,West Virginia University | Mohamed J.S.,West Virginia University
Frontiers in Aging Neuroscience | Year: 2014

The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. © 2014 Alway, Myers and Mohamed.

Stapleton P.A.,Center for Cardiovascular and Respiratory science | Nichols C.E.,West Virginia University | Yi J.,Center for Cardiovascular and Respiratory science | McBride C.R.,Center for Cardiovascular and Respiratory science | And 4 more authors.
Nanotoxicology | Year: 2014

Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted

PubMed | Center for Cardiovascular and Respiratory science and West Virginia University
Type: Journal Article | Journal: American journal of physiology. Heart and circulatory physiology | Year: 2015

Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.

Loading Center for Cardiovascular and Respiratory science collaborators
Loading Center for Cardiovascular and Respiratory science collaborators