Time filter

Source Type

Temple, TX, United States

Sampson H.W.,Texas A&M University | Sampson H.W.,Center for Bone | Chaput C.D.,Scott and White Clinic | Chaput C.D.,Center for Bone | And 7 more authors.
Experimental Biology and Medicine | Year: 2011

It is well recognized by orthopedic surgeons that fractures of alcoholics are more difficult to heal successfully and have a higher incidence of non-union, but the mechanism of alcohol's effect on fracture healing is unknown. In order to give direction for the study of the effects of alcohol on fracture healing, we propose to identify gene expression and microRNA changes during the early stages of fracture healing that might be attributable to alcohol consumption. As the inflammatory stage appears to be the most critical for successful fracture healing, this paper focuses on the events at day three following fracture or the stage of inflammation. Sprague-Dawley rats were placed on an ethanol-containing or pair-fed Lieber and DeCarli diet for four weeks prior to surgical fracture. Following insertion of a medullary pin, a closed middiaphyseal fracture was induced using a Bonnarens and Einhorn fracture device. At three days' post-fracture, the region of the fracture calluses was harvested from the right hind-limb. RNA was extracted and microarray analysis was conducted against the entire rat genome. There were 35 genes that demonstrated significant increased expression due to alcohol consumption and 20 that decreased due to alcohol. In addition, the expression of 20 microRNAs was increased and six decreased. In summary, while it is recognized that mRNA levels may or may not represent protein levels successfully produced by the cell, these studies reveal changes in gene expression that support the hypothesis that alcohol consumption affects events involved with inflammation. MicroRNAs are known to modulate mRNA and these findings were consistent with much of what was seen with mRNA microarray analysis, especially the involvement of smad4 which was demonstrated by mRNA microarray, microRNA and polymerase chain reaction. © 2011 by the Society for Experimental Biology and Medicine. Source

Chaput C.D.,Scott and White Clinic | Chaput C.D.,Center for Bone | Dangott L.J.,Texas A&M University | Rahm M.D.,Scott and White Clinic | And 8 more authors.
Experimental Biology and Medicine | Year: 2012

The focus of this study was to identify changes in protein expression within the bone tissue environment between osteopenic and control bone tissue of human femoral neck patients with osteoarthritis. Femoral necks were compared from osteopenic patients and age-matched controls. A new method of bone protein extraction was developed to provide a swift, clear view of the bone proteome. Relative changes in protein expression between control and osteopenic samples were quantified using difference gel electrophoresis (DIGE) technology after affinity chromatographic depletion of albumin and IgG. The proteins that were determined to be differentially expressed were identified using standard liquid chromatography mass spectrometry (LC/MS/MS) and database searching techniques. In order to rule out blood contamination, blood from agematched osteoporotic, osteopenic and controls were analyzed in a similar manner. Image analysis of the DIGE gels indicated that 145 spots in the osteopenic bone samples changed at least+1.5-fold from the control samples (P, 0.05). Three of the proteins were identified by LC/MS/MS. Of the proteins that increased in the osteopenic femurs, two were especially significant: carbonic anhydrase I and phosphoglycerate kinase 1. Apolipoprotein A-I was the most prominent protein that significantly decreased in the osteopenic femurs. The blood samples revealed no significant differences between groups for any of these proteins. In conclusion, carbonic anhydrase I, phosphoglycerate kinase 1 and apolipoprotein A-I appeared to be the most significant variations of proteins in patients with osteopenia and osteoarthritis. Source

Discover hidden collaborations