Center for Bioengineering and Biotechnology

Laboratory of, China

Center for Bioengineering and Biotechnology

Laboratory of, China

Time filter

Source Type

Xia Y.,Center for Bioengineering and Biotechnology | Gu Y.,Center for Bioengineering and Biotechnology | Zhou X.,Center for Bioengineering and Biotechnology | Xu H.,Center for Bioengineering and Biotechnology | And 4 more authors.
Biomacromolecules | Year: 2012

Two types of thermoresponsive microgels, poly(N-isopropylacrylamide) (PNIPAM) microgels and poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAMAC) microgels were synthesized and used as templates for the mineralization of amorphous calcium carbonate (ACC) by diffusion of CO2 vapor under ambient conditions. Thermosensitive PNIPAM/CaCO3 hybrid macroscopic hydrogels and micrometer-sized PNIPAMAC/CaCO3 hybrid microgels were controllably obtained and different mineralization mechanistic processes were proposed. The impact of the loaded CaCO3 on the size, morphology, stability, and thermosensitivity of the microgels was also analyzed. PNIPAM/CaCO3 hybrid macrogels had a slight decrease in thermoresponsive phase transition temperature, while PNIPAMAC/CaCO3 hybrid microgels showed a clear increase in phase transition temperature. The difference reflected different amount and location of ACC in the gel network, causing different interactions with polymer chains. The PNIPAMAC/CaCO 3 microgels formed stable monolayer films on bare silica wafers and glass coverslips upon drying. The microgel films could facilitate the attachment and growth of 3T3 fibroblast cells and their subsequent detachment upon temperature drop from 37 °C to the ambient condition around 20 °C, thus, offering a convenient procedure for cell harvesting. © 2012 American Chemical Society.


Zhao J.-Y.,Center for Bioengineering and Biotechnology | Zhao J.-Y.,China University of Petroleum - East China | Zhu Y.-Q.,Qingdao University | Li Y.-N.,Qingdao University | And 6 more authors.
FEMS Microbiology Letters | Year: 2015

This study aims to characterize antimicrobial resistance and antimicrobial resistance genetic determinants of an Escherichia coli clinical isolate HD0149 from China in 2012. This strain displayed high-level resistance to cephalosporins, carbapenems, fluoroquinolones, aminoglycosides and fosfomycin. A range of antimicrobial resistance genes was detected responsible for its multiple antimicrobial resistances, involving the blaCMY-2, blaCTX-M-65, blaNDM-1, blaSFO-1, blaTEM-1, fosA3, rmtB, sul1 and sul2 genes. Four amino acid substitutions were detected in the quinolone resistance determining regions (QRDRs) of GyrA (S83L and D87N), ParC (S80I) and ParE (S458A). Conjugation experiments revealed two multiresistance plasmids present in E. coli HD0149. The blaSFO-1 gene associated with blaNDM-1 gene was located in a 190 kb IncA/C plasmid and the blaCTX-M-65, fosA3 and rmtB genes were located in a 110 kb IncF plasmid. This is the first identification of the blaSFO-1 gene in an E. coli isolate and on a conjugative IncA/C plasmid. This may dramatically enhance the international prevalence and dissemination of blaSFO-1 among Enterobacteriaceae. © 2014 FEMS.


PubMed | Center for Bioengineering and Biotechnology
Type: Journal Article | Journal: Biomacromolecules | Year: 2012

Two types of thermoresponsive microgels, poly(N-isopropylacrylamide) (PNIPAM) microgels and poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAMAC) microgels were synthesized and used as templates for the mineralization of amorphous calcium carbonate (ACC) by diffusion of CO(2) vapor under ambient conditions. Thermosensitive PNIPAM/CaCO(3) hybrid macroscopic hydrogels and micrometer-sized PNIPAMAC/CaCO(3) hybrid microgels were controllably obtained and different mineralization mechanistic processes were proposed. The impact of the loaded CaCO(3) on the size, morphology, stability, and thermosensitivity of the microgels was also analyzed. PNIPAM/CaCO(3) hybrid macrogels had a slight decrease in thermoresponsive phase transition temperature, while PNIPAMAC/CaCO(3) hybrid microgels showed a clear increase in phase transition temperature. The difference reflected different amount and location of ACC in the gel network, causing different interactions with polymer chains. The PNIPAMAC/CaCO(3) microgels formed stable monolayer films on bare silica wafers and glass coverslips upon drying. The microgel films could facilitate the attachment and growth of 3T3 fibroblast cells and their subsequent detachment upon temperature drop from 37 C to the ambient condition around 20 C, thus, offering a convenient procedure for cell harvesting.

Loading Center for Bioengineering and Biotechnology collaborators
Loading Center for Bioengineering and Biotechnology collaborators