Center for Bat Protection and Information

Bad Segeberg, Germany

Center for Bat Protection and Information

Bad Segeberg, Germany
SEARCH FILTERS
Time filter
Source Type

Lukashev A.N.,Moscow State University | Corman V.M.,University of Bonn | Corman V.M.,German Center for Infection Research | Corman V.M.,Institute of Virology | And 10 more authors.
Journal of General Virology | Year: 2017

Our investigation of 1004 faecal specimens from European bats for picornaviruses by broadly reactive nested reverse transcription-PCR found picornaviral RNA in 28 samples (2.8 %). Phylogenetic analysis of the partial 3D genomic region suggested that one bat virus belonged to the species Enterovirus G (EV-G, formerly Porcine enterovirus B). Bat infection was supported by relatively high EV-G concentrations of 1.1×106RNA copies per gram of faeces. All other bat viruses belonged either to the bat-associated genus Mischivirus, or to an unclassified Picornaviridae group distantly related to the genus Sapelovirus. Members of this unclassified sapelovirus-related group had RNA secondary structures in their 3′-nontranslated regions that were typical of enteroviruses and that resembled structures that occur in bat-associated coronaviruses, suggesting ancient recombination events. Based on sequence distances, several picornaviruses from European and Chinese bats were likely conspecific, suggesting connectivity of virus populations. Due to their high mutation rates and their diversity, picornaviruses may be useful tools for studies of bat and virus ecology. © 2017 The Authors.


Marklewitz M.,University of Bonn | Gloza-Rausch F.,Center for Bat Protection and Information | Kurth A.,Robert Koch Institute | Kummerer B.M.,University of Bonn | And 2 more authors.
Journal of General Virology | Year: 2012

Drosophila X virus (DXV), the prototype Entomobirnavirus, is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating Culex pipiens complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus Entomobirnavirus. In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to 1927GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains. © 2012 SGM.


Drexler J.F.,University of Bonn | Corman V.M.,University of Bonn | Muller M.A.,University of Bonn | Maganga G.D.,Center International Of Recherches Medicales Of Franceville | And 34 more authors.
Nature Communications | Year: 2012

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. © 2012 Macmillan Publishers Limited. All rights reserved.


Drexler J.F.,University of Bonn | Gloza-Rausch F.,University of Bonn | Gloza-Rausch F.,Center for Bat Protection and Information | Glende J.,University of Veterinary Medicine Hannover | And 16 more authors.
Journal of Virology | Year: 2010

Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4 × 108 copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Drexler J.F.,University of Bonn | Corman V.M.,University of Bonn | Muller M.A.,University of Bonn | Lukashev A.N.,Chumakov Institute of Poliomyelitis and Viral Encephalitides | And 35 more authors.
PLoS Pathogens | Year: 2013

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV. © 2013 Drexler et al.


Annan A.,Kumasi Center for Collaborative Research in Tropical Medicine | Baldwin H.J.,Macquarie University | Baldwin H.J.,University of Ulm | Corman V.M.,University of Bonn | And 20 more authors.
Emerging Infectious Diseases | Year: 2013

We screened fecal specimens of 4,758 bats from Ghana and 272 bats from 4 European countries for betacoronaviruses. Viruses related to the novel human betacoronavirus EMC/2012 were detected in 46 (24.9%) of 185 Nycteris bats and 40 (14.7%) of 272 Pipistrellus bats. Their genetic relatedness indicated EMC/2012 originated from bats.


Drexler J.F.,University of Bonn | Seelen A.,University of Bonn | Corman V.M.,University of Bonn | Tateno A.F.,University of Bonn | And 17 more authors.
Journal of Virology | Year: 2012

Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic viruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae. Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analysis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence-and distance-based taxonomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors causally involved in the evolution of human HEV. © 2012, American Society for Microbiology.


Biesold S.E.,University of Bonn | Ritz D.,University of Bonn | Gloza-Rausch F.,University of Bonn | Gloza-Rausch F.,Center for Bat Protection and Information | And 8 more authors.
PLoS ONE | Year: 2011

Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs. © 2011 Biesold et al.


Drexler J.F.,University of Bonn | Corman V.M.,University of Bonn | Wegner T.,University of Bonn | Tateno A.F.,University of Bonn | And 7 more authors.
Emerging Infectious Diseases | Year: 2011

Bats host noteworthy viral pathogens, including coronaviruses, astroviruses, and adenoviruses. Knowledge on the ecology of reservoir-borne viruses is critical for preventive approaches against zoonotic epidemics. We studied a maternity colony of Myotis myotis bats in the attic of a private house in a suburban neighborhood in Rhineland-Palatinate, Germany, during 2008, 2009, and 2010. One coronavirus, 6 astroviruses, and 1 novel adenovirus were identified and monitored quantitatively. Strong and specific amplification of RNA viruses, but not of DNA viruses, occurred during colony formation and after parturition. The breeding success of the colony was significantly better in 2010 than in 2008, in spite of stronger amplification of coronaviruses and astroviruses in 2010, suggesting that these viruses had little pathogenic infl uence on bats. However, the general correlation of virus and bat population dynamics suggests that bats control infections similar to other mammals and that they may well experience epidemics of viruses under certain circumstances.

Loading Center for Bat Protection and Information collaborators
Loading Center for Bat Protection and Information collaborators