Cincinnati, OH, United States
Cincinnati, OH, United States

Time filter

Source Type

Kottyan L.C.,Center for Autoimmune Genomics and Etiology | Zoller E.E.,Center for Autoimmune Genomics and Etiology | Bene J.,Center for Autoimmune Genomics and Etiology | Lu X.,Center for Autoimmune Genomics and Etiology | And 83 more authors.
Human Molecular Genetics | Year: 2015

Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10-49; OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3(P-valuesEU = 10-27-10-32, OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credibleset of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3. © The Author 2014.


Kaufman K.M.,Center for Autoimmune Genomics and Etiology | Zhao J.,University of California at Los Angeles | Kelly J.A.,Oklahoma Medical Research Foundation | Hughes T.,Oklahoma Medical Research Foundation | And 44 more authors.
Annals of the Rheumatic Diseases | Year: 2013

Objectives: The Xq28 region containing IRAK1 and MECP2 has been identified as a risk locus for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to the strong linkage disequilibrium between IRAK1 and MECP2, it remains unclear which gene is affected by the underlying causal variant (s) conferring risk of SLE. Methods: We fine-mapped ≥136 SNPs in a ∼227 kb region on Xq28, containing IRAK1, MECP2 and seven adjacent genes (L1CAM, AVPR2, ARHGAP4, NAA10, RENBP HCFC1 and TMEM187), for association with SLE in 15 783 case-control subjects derived from four different ancestral groups. Results: Multiple SNPs showed strong association with SLE in European Americans, Asians and Hispanics at p<5×10-8 with consistent association in subjects with African ancestry. Of these, six SNPs located in the TMEM187-IRAK1-MECP2 region captured the underlying causal variant(s) residing in a common risk haplotype shared by all four ancestral groups. Among them, rs1059702 best explained the Xq28 association signals in conditional testings and exhibited the strongest p value in transancestral meta-analysis (p meta=1.3×10-27, OR=1.43), and thus was considered to be the most likely causal variant. The risk allele of rs1059702 results in the amino acid substitution S196F in IRAK1 and had previously been shown to increase NF-KB activity in vitro. We also found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels of MECP2, but not IRAK1, in SLE patients (p=0.0012) and healthy controls (p=0.0064). Conclusions: These data suggest contributions of both IRAK1 and MECP2 to SLE susceptibility.

Loading Center for Autoimmune Genomics and Etiology collaborators
Loading Center for Autoimmune Genomics and Etiology collaborators