Entity

Time filter

Source Type


Chen M.-H.,National Yang Ming University | Chen M.-H.,Taipei Veterans General Hospital | Yen C.-C.,Taipei Veterans General Hospital | Cheng C.-T.,Chang Gung University | And 16 more authors.
Oncotarget | Year: 2015

Cholangiocarcinoma (CCA) is characterized by a uniquely aggressive behavior and lack of effective targeted therapies. After analyzing the gene expression profiles of seven paired intrahepatic CCA microarrays, a novel sphingosine kinase 1 (SPHK1)/ sphingosine-1-phosphate (S1P) pathway and a novel target gene, SPHK1, were identified. We hypothesized that therapeutic targeting of this pathway can be used to kill intrahepatic cholangiocarcinoma (CCA) cells. High levels of SPHK1 protein expression, which was evaluated by immunohistochemical staining of samples from 96 patients with intrahepatic CCA, correlated with poor overall survival. The SPHK1 inhibitor SK1-I demonstrated potent antiproliferative activity in vitro and in vivo. SK1-I modulated the balance of ceramide-sphinogosine-S1P and induced CCA apoptosis. Furthermore, SK1-I combined with JTE013, an antagonist of the predominant S1P receptor S1PR2, inhibited the AKT and ERK signaling pathways in CCA cells. Our preclinical data suggest SPHK1/S1P pathway targeting may be an effective treatment option for patients with CCA.


Wu C.-P.,Chang Gung University | Hsieh Y.-J.,Chang Gung University | Hsiao S.-H.,Chang Gung University | Su C.-Y.,Chang Gung University | And 6 more authors.
Molecular Pharmaceutics | Year: 2016

CUDC-907 is a novel, dual-acting small molecule compound designed to simultaneously inhibit the activity of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). Treatment with CUDC-907 led to sustained inhibition of HDAC and PI3K activity, inhibition of RAF-MEK-MAPK signaling pathway, and inhibition of cancer cell growth. CUDC-907 is currently under evaluation in phase I clinical trials in patients with lymphoma or multiple myeloma, and in patients with advanced solid tumors. However, the risk of developing acquired resistance to CUDC-907 can present a significant therapeutic challenge to clinicians in the future and should be investigated. The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1, ABCC1, or ABCG2 is one of the most common mechanisms of developing multidrug resistance (MDR) in cancers and a major obstacle in chemotherapy. In this study, we reveal that ABCG2 reduces the intracellular accumulation of CUDC-907 and confers significant resistance to CUDC-907, which leads to reduced activity of CUDC-907 to inhibit HDAC and PI3K in human cancer cells. Moreover, although CUDC-907 affects the transport function of ABCG2, it was not potent enough to reverse drug resistance mediated by ABCG2 or affect the expression level of ABCG2 in human cancer cells. Taken together, our findings indicate that ABCG2-mediated CUDC-907 resistance can have serious clinical implications and should be further investigated. More importantly, we demonstrate that the activity of CUDC-907 in ABCG2-overexpressing cancer cells can be restored by inhibiting the function of ABCG2, which provides support for the rationale of combining CUDC-907 with modulators of ABCG2 to improve the pharmacokinetics and efficacy of CUDC-907 in future treatment trials. © 2016 American Chemical Society.


Huang C.-C.,National Tsing Hua University | Chia W.-T.,National Taiwan University Hospital | Chung M.-F.,National Tsing Hua University | Lin K.-J.,Center for Advanced Molecular Imaging and Translation | And 5 more authors.
Journal of the American Chemical Society | Year: 2016

In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors resist treatment using antitumor drugs (such as doxorubicin, DOX), owing to their attenuated intracellular production of reactive oxygen species (ROS). Hyperbaric oxygen (HBO) therapy favorably improves oxygen transport to the hypoxic tumor tissues, thereby increasing the sensitivity of tumor cells to DOX. However, the use of HBO with DOX potentiates the ROS-mediated cytotoxicity of the drug toward normal tissues. In this work, we hypothesize that regional oxygen treatment by an implanted oxygen-generating depot may enhance the cytotoxicity of DOX against malignant tissues in a highly site-specific manner, without raising systemic oxygen levels. Upon implantation close to the tumor, the oxygen-generating depot reacts with the interstitial medium to produce oxygen in situ, effectively shrinking the hypoxic regions in the tumor tissues. Increasing the local availability of oxygen causes the cytotoxicity of DOX that is accumulated in the tumors to be significantly enhanced by the elevated production of ROS, ultimately allaying the hypoxia-induced DOX resistance in solid malignancies. Importantly, this enhancement of cytotoxicity is limited to the site of the tumors, and this feature of the system that is proposed herein is unique. © 2016 American Chemical Society.


Chen P.-T.,Chang Gung University | Hsieh C.-C.,Chang Gung University | Wu C.-T.,Chang Gung University | Yen T.-C.,Chang Gung Memorial Hospital at Linkou | And 4 more authors.
Molecular Cancer Therapeutics | Year: 2015

The aim of this study was to highlight the role of 1α,25-dihydroxyvitamin D3 (calcitriol) in esophageal squamous cell carcinoma (SCC). The human esophageal SCC cell lines CE81T and TE2 were selected for cellular and animal experiments to investigate the changes in tumor behavior after calcitriol supplementation and the underlying mechanisms. Moreover, we evaluated the relationship between calcitriol supplementation, myeloidderived suppressor cell (MDSC) recruitment, IL6 levels, and tumor progression by a 4-nitroquinoline 1-oxide (4-NQO)-induced esophageal tumor animal model. In this study, we demonstrated that calcitriol supplementation inhibited aggressive tumor behavior both in vitro and in vivo. The underlying changes included increased cell death, a lower degree of epithelial-mesenchymal transition, and inhibited IL6 signaling. In the 4-NQO-induced esophageal tumor animal model, increased IL6 and MDSC recruitment were linked with invasive esophageal tumors. Supplementation with calcitriol attenuated the level of IL6, the induction of MDSCs, and the incidence of 4-NQO-induced invasive tumors. Moreover, the IL6-induced changes in C57 mice, including augmented MDSC recruitment, increased levels of ROS and p-Stat3 in MDSCs, and higher suppressive function of MDSCs in T-cell proliferation, which were abrogated by calcitriol supplementation. Onthe basis of our results, we concluded that calcitriol abrogated the IL6-induced aggressive tumor behavior and MDSC recruitment to inhibit esophageal tumor promotion. Therefore, we suggest that supplementation with vitamin D3 may be a promising strategy for the prevention and treatment of esophageal SCC. © 2015 American Association for Cancer Research.


Wu C.-P.,Graduate Institute of Biomedical science | Wu C.-P.,Chang Gung University | Hsiao S.-H.,Graduate Institute of Biomedical science | Su C.-Y.,Graduate Institute of Biomedical science | And 5 more authors.
Biochemical Pharmacology | Year: 2014

CUDC-101 is the first small-molecule inhibitor designed to simultaneously inhibit epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2) and histone deacetylase (HDAC) in cancer cells. Recently, in its first in human phase I study, CUDC-101 showed promising single agent activity against advanced solid tumors and favorable pharmacodynamic profile. However, the risk of developing drug resistance to CUDC-101 can still present a significant therapeutic challenge to clinicians in the future. One of the most common mechanisms of developing multidrug resistance (MDR) in cancer is associated with the overexpression of ATP-binding cassette (ABC) drug transporters ABCB1 and ABCG2. Together, they are able to reduce the efficacy and modify the pharmacological properties of anti-cancer agents, including many small molecule tyrosine kinase inhibitors (TKIs). Here, we have investigated the impact of ABCB1 and ABCG2 on the efficacy of CUDC-101 in human cancer cells. We revealed that although CUDC-101 has potent antiproliferative and proapoptotic activities against most cancer cell lines, the overexpression of ABCB1 or ABCG2 in cancer cells significantly reduced the activity of CUDC-101 against HDAC, EGFR and HER2, as well as its cytotoxicity and proapoptotic activity. Moreover, we showed that CUDC-101 modulated the function of both transporters without affecting the protein expression of either ABCB1 or ABCG2. More importantly, our study provides support for the rationale of combining CUDC-101 with modulators of ABC drug transporters to improve drug efficacy and overcome multidrug resistance associated with the overexpression of ABCB1 and ABCG2. © 2014 Elsevier Inc. All rights reserved.

Discover hidden collaborations