Time filter

Source Type

Idaho Falls, ID, United States

Kaur M.,University of Idaho | Dai Q.,University of Wyoming | Bowden M.,Pacific Northwest National Laboratory | Engelhard M.,Pacific Northwest National Laboratory | And 4 more authors.
Applied Physics Letters

Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. © 2013 AIP Publishing LLC. Source

Van Rooyen I.J.,Idaho National Laboratory | Lillo T.M.,Idaho National Laboratory | Wu Y.Q.,Boise State University | Wu Y.Q.,Center for Advanced Energy Studies
Journal of Nuclear Materials

Evidence of the release of certain metallic fission products through intact tristructural isotropic (TRISO) particles has been seen for decades around the world, as well as in the recent AGR-1 experiment at the Idaho National Laboratory (INL). However, understanding the basic mechanism of transport is still lacking. This understanding is important because the TRISO coating is part of the high temperature gas-cooled reactor functional containment and critical for the safety strategy for licensing purposes. Our approach to identify fission products in irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS) and energy filtered TEM (EFTEM), has led to first-of-a-kind data at the nano-scale indicating the presence of silver at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in the triple junctions. In this initial study, the silver was only identified in SiC grain boundaries and triple points on the edge of the SiC-IPyC interface up to a depth of approximately 0.5 μm. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. Additionally spherical nano-sized palladium rich precipitates were found inside the SiC grains. No silver was found in the center of the micron-sized fission product precipitates using these techniques, although silver was found on the outer edge of one of the Pd-U-Si containing precipitates which was facing the IPyC layer. Only Pd-U containing precipitates were identified in the IPyC layer and no silver was identified in the IPyC layer. The identification of silver alongside the SiC grain boundaries and the findings of Pd inside the SiC grains and alongside SiC grain boundaries provide important information needed to understand silver and palladium transport in TRISO fuel, which has been the topic of international research for the past forty years. The findings reported in this paper may support the postulations of recent research that Ag transport may be driven by grain boundary diffusion. However, more work is needed to fully understand the transport mechanisms. Additionally, the usefulness of the advanced electron microscopic techniques for TRISO coated particle research is demonstrated in this paper. Source

Khafizov M.,Ohio State University | Pakarinen J.,Belgian Nuclear Research Center | He L.,Idaho National Laboratory | Henderson H.B.,University of Florida | And 6 more authors.
Acta Materialia

We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors gigahertz frequency Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonic propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. A subsurface image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this subsurface imaging capability using a polycrystalline UO2 sample. Cross section liftout analysis of the grain boundary using electron microscopy was used to verify our imaging results. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Source

Chen W.-Y.,Urbana University | Miao Y.,Urbana University | Wu Y.,Boise State University | Wu Y.,Center for Advanced Energy Studies | And 6 more authors.
Journal of Nuclear Materials

Atom probe tomography (APT) was performed to study the effects of Cr concentrations, irradiation doses and irradiation temperatures on α phase formation in Fe-Cr model alloys (10-16 at.%) irradiated at 300 and 450 °C to 0.01, 0.1 and 1 dpa. For 1 dpa specimens, α precipitates with an average radius of 1.0-1.3 nm were observed. The precipitate density varied significantly from 1.1 × 1023 to 2.7 × 1024 1/m3, depending on Cr concentrations and irradiation temperatures. The volume fraction of α phase in 1 dpa specimens qualitatively agreed with the phase diagram prediction. For 0.01 dpa and 0.1 dpa, frequency distribution analysis detected slight Cr segregation in high-Cr specimens, but not in Fe-10Cr specimens. Proximity histogram analysis showed that the radial Cr concentration was highest at the center of α precipitates. For most precipitates, the Cr contents were significantly lower than that predicted by the phase diagram. The Cr concentration at precipitate center increased with increasing precipitate size. © Published by Elsevier B.V. Source

Kaur M.,University of Idaho | Dai Q.,University of Wyoming | Bowden M.,Pacific Northwest National Laboratory | Engelhard M.H.,Pacific Northwest National Laboratory | And 3 more authors.

Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O 3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system. © 2013 The Royal Society of Chemistry. Source

Discover hidden collaborations