Entity

Time filter

Source Type


Ramasamy K.,Center for Advance Research in Pharmacogenomics | Narayan S.K.,Jawaharlal Institute of Postgraduate Medical Education & Research | Shewade D.G.,Center for Advance Research in Pharmacogenomics | Chandrasekaran A.,Center for Advance Research in Pharmacogenomics
Therapeutic Drug Monitoring | Year: 2010

The objective of this study was to study the effect of CYP2C9 genetic polymorphism and undernourishment on free phenytoin concentrations in epileptic patients. The study was done in 70 patients who were taking phenytoin therapy for the treatment of epileptic seizures. Genotyping of CYP2C9 (*2 and *3) was determined by the polymerase chain reaction-restriction fragment length polymorphism method. Bound and free plasma phenytoin was separated using equilibrium dialysis technique. Total and free phenytoin concentrations were measured by the reverse-phase high-performance liquid chromatography method. Patients were broadly classified into well-nourished and undernourished and further subclassified by CYP2C9 genotypes. In well-nourished groups (G1 to G3 group), free phenytoin concentrations were significantly higher in the heterozygous poor metabolizer of CYP2C9 genotype (G2) group (3.1 ± 0.62 μg/mL) and homozygous poor metabolizer of CYP2C9 genotype (G3) group (4.3 ± 1.76 μg/mL) when compared with patients with the wild-type CYP2C9 (G1) group (1.1 ± 0.72 μg/mL). Similarly, in undernourished patient groups (G4-G6 group), free phenytoin concentrations were significantly higher in the wild-type CYP2C9 (G4) group (2.5 ± 0.52 μg/mL), heterozygous poor metabolizer of CYP2C9 genotype (G5) group (4.3 ± 1.76 μg/mL), and homozygous poor metabolizer of CYP2C9 genotype (G6) group (8.2 ± 1.08 μg/mL) when compared with well-nourished patients with the wild-type CYP2C9 (G1) group (1.1 ± 0.72 μg/mL). The percentage increase in free phenytoin concentration by undernourishment, CYP2C9 allelic variants, and undernourishment cum CYP2C9 allelic variants were 127%, 290%, and 472%, respectively, compared with well-nourished patients with the wild-type CYP2C9 genotype (G1) group. The contribution of undernourishment and genetic factors (CYP2C9 allelic variant) for developing phenytoin toxicity was calculated to have an odds ratio of 37.3 (P < 0.0001). Undernourishment and variant CYP2C9 alleles elevate free phenytoin concentrations individually and in combination show additive effects. © 2010 by Lippincott Williams & Wilkins. Source


Umamaheswaran G.,Center for Advance Research in Pharmacogenomics | Kumar D.K.,Center for Advance Research in Pharmacogenomics | Kayathiri D.,Center for Advance Research in Pharmacogenomics | Rajan S.,Center for Advance Research in Pharmacogenomics | And 7 more authors.
Molecular Biology Reports | Year: 2012

Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2, *3A, *3B, *3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G[T/A & 3435C[T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 andMDR1 gene polymorphisms of the South Indian population was significantly different from other populations. © Springer Science+Business Media B.V. 2011. Source

Discover hidden collaborations