Entity

Time filter

Source Type


Djebali N.,Center de Biotechnologie de la Technopole de Borj-Cedria
Phytopathologia Mediterranea | Year: 2013

Aggressiveness of 14 Phoma medicaginis isolates obtained from Medicago truncatula (barrel medic) and M. ciliaris (ciliate medic) growing in Tunisia was measured after inoculation on leaves and roots of M. truncatula. The ability of one isolate to cause disease on M. sativa (alfalfa), Cicer arietinum (chickpea), Pisum sativum (pea), Lens culinaris (lentil) and Phaseolus vulgaris (common bean) was also tested. The pathogen caused dark lesions that enlarged and coalesced causing yellowing and premature abscission of leaves, resulting in decreased shoot fresh weight in barrel medic plants. All P. medicaginis isolates infected barrel medic roots causing collar rot, brown root discoloration, yellowing of cotyledons and reduced shoot and root development. The pathogen colonized the cortex and the stele of plants and produced fertile pycnidia on infected roots. Symptoms on leaves allowed for greater discrimination in aggressiveness among isolates in comparison to symptoms on roots. No correlations were observed between the parameters measured on leaves and roots suggesting organ specialization in this pathogen. Phoma medicaginis infected leaves of alfalfa, pea, common bean and chickpea causing necrosis and tissue yellowing at 15 d post inoculation (dpi). Pycnidium production was observed on dead and dying foliar tissues of alfalfa, pea and common bean, but not on chickpea. The pathogen caused symptoms of collar rot and brown root discoloration on alfalfa, chickpea, pea and common bean, but did not cause symptoms on leaves or roots of lentil at 15 dpi. Phoma medicaginis was more pathogenic on barrel medic, the host of origin, in comparison to the other legumes, suggesting that these species are likely to be secondary hosts for this pathogen. © Firenze University Press. Source


Charradi K.,Center de Biotechnologie de la Technopole de Borj-Cedria
Canadian journal of physiology and pharmacology | Year: 2013

Obesity is a public health problem contributing to morbidity and mortality from metabolic syndrome. It has long been recognized that there is a gender dependency in several obesity-related health risks. Using a high fat diet (HFD) to induce obesity in Wistar rats, we studied the gender dependency of fat-induced oxidative stress in the heart and liver, with a special emphasis on the distribution of transition metals, as well as the protective effects of grape seed and skin extract (GSSE). HFD induced obesity in both male and female rats, characterized by increased body weight as well as relative liver mass in both genders, and increased relative heart mass in the males only. HFD also provoked the accumulation of triglycerides and total cholesterol into the male hearts, and into the livers of both genders. HFD induced oxidative stress in the male hearts and also in the livers of both genders. Furthermore, HFD affected cardiac levels of copper in the males, and hepatic levels of copper and zinc in both genders, whereas HFD affected free iron in the male hearts and female livers, specifically. In conclusion, HFD treatment altered transition metal homeostasis more drastically in the male heart than in the female liver, and GSSE efficiently protected these organs against fat-induced disturbances, regardless of gender. Source


Tizaoui K.,Tunis el Manar University | Kchouk M.E.,Center de Biotechnologie de la Technopole de Borj-Cedria
Genetics and Molecular Biology | Year: 2012

Transgene integration into plant genomes is a complex process accompanied by molecular rearrangements. Classic methods that are normally used to study transgenic population genetics are generally inadequate for assessing such integration. Two major characteristics of transgenic populations are that a transgenic genome may harbor many copies of the transgene and that molecular rearrangements can create an unstable transgenic locus. In this work, we examined the segregation of T1, T2 and T3 transgenic tobacco progenies. Since transfer DNA (T-DNA) contains the NptII selectable marker gene that confers resistance to kanamycin, we used this characteristic in developing a method to estimate the number of functional inserts integrated into the genome. This approach was based on calculation of the theoretical segregation ratios in successive generations. Mendelian ratios of 3:1, 15:1 and 63:1 were confirmed for five transformation events whereas six transformation events yielded non-segregating progenies, a finding that raised questions about causal factors. A second approach based on a maximum likelihood method was performed to estimate recombination frequencies between linked inserts. Recombination estimates varied among transformation events and over generations. Some transgenic loci were unstable and evolved continuously to segregate independently in the T3 generation. Recombination and amplification of the transgene and filler DNA yielded additional transformed genotypes. © 2012, Sociedade Brasileira de Genética. Printed in Brazil. Source


Patent
Center de Biotechnologie de la Technopole de Borj-Cedria and University of Tsukuba | Date: 2012-11-26

Obesity is one of the major health concerns in the Twenty-First Century and is one of the leading causes of preventable death. It is a strong risk factor for Type 2 Diabetes. Disclosed herein are compositions and methods using


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-CA | Phase: KBBE.2010.4-04 | Award Amount: 1.15M | Year: 2011

The main objective of BIO CIRCLE 2 is to foster the knowledge base about FP7 FAFB & the networking capacities of Third Country researchers in order to reinforce their participation in FP7 projects. 3 project goals are distinguished: 1.Disseminate information effectively to Third Country researchers; 2.Organise information days and training for Third Country researchers; 3.Provide Third Country researchers with efficient networking opportunities. 5 European plus 16 Third Country partners (International Cooperation Partner Countries ICPC and Industrialised Countries) will all be involved in the activities. Apart from Kazakhstan and Thailand all involved countries (and the African continent represented by FARA) have signed a bilateral S&T agreement with the EU. The expected impacts are supported by various activities: Enhanced awareness of the Third Country researchers on the FP7 FAFB: WP2 will develop the regional strategies for the Third Country partners. Increased Third Country researchers participation in EU projects: WP3 will organise at least 2 trainings for Third Country researchers at national and regional level, 3 trainings of Third Country BIO NCPs and the organisation of 1 Regional Event per World Region. Strengthened collaborations with Third Countries signatories of bilateral S&T agreements with the EU: WP4 will implement networking activities for Third Country researchers, including brokerage events and working visits of Third Country researchers to EU research institutes and vice versa. Finally WP5 on dissemination activities will increase the awareness of European researchers about the international cooperation in FP7 FAFB. The impact of the activities will be further maximised by: 1.involving other countries that are not partners through a regional approach; 2.linking the BIO CIRCLE 2 activities to the activities of related INCO projects; 3.involving industrialised countries that are global S&T leaders in FAFB related research.

Discover hidden collaborations