Time filter

Source Type

Moreno A.D.,IMDEA Madrid Institute for Advanced Studies | Ibarra D.,Cellulose and Paper Laboratories | Alvira P.,CIEMAT | Tomas-Pejo E.,Chalmers University of Technology | Ballesteros M.,CIEMAT
Critical Reviews in Biotechnology

Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry. © 2015 Informa Healthcare USA, Inc. Source

Moreno A.D.,IMDEA Madrid Institute for Advanced Studies | Moreno A.D.,Chalmers University of Technology | Tomas-Pejo E.,Chalmers University of Technology | Ibarra D.,Cellulose and Paper Laboratories | Olsson L.,Chalmers University of Technology
Biotechnology for Biofuels

Background: Lignocellulosic bioethanol is expected to play an important role in fossil fuel replacement in the short term. Process integration, improvements in water economy, and increased ethanol titers are key considerations for cost-effective large-scale production. The use of whole steam-pretreated slurries under high dry matter (DM) conditions and conversion of all fermentable sugars offer promising alternatives to achieve these goals. Results: Wheat straw slurry obtained from steam explosion showed high concentrations of degradation compounds, hindering the fermentation performance of the evolved xylose-recombinant Saccharomyces cerevisiae KE6-12 strain. Fermentability tests using the liquid fraction showed a higher number of colony-forming units (CFU) and higher xylose consumption rates when treating the medium with laccase. During batch simultaneous saccharification and co-fermentation (SSCF) processes, cell growth was totally inhibited at 12% DM (w/v) in untreated slurries. However, under these conditions laccase treatment prior to addition of yeast reduced the total phenolic content of the slurry and enabled the fermentation. During this process, an ethanol concentration of 19 g/L was obtained, corresponding to an ethanol yield of 39% of the theoretical yield. By changing the operation from batch mode to fed-batch mode, the concentration of inhibitors at the start of the process was reduced and 8 g/L of ethanol were obtained in untreated slurries with a final consistency of 16% DM (w/v). When fed-batch SSCF medium was supplemented with laccase 33 hours after yeast inoculation, no effect on ethanol yield or cell viability was found compared to untreated fermentations. However, if the laccase supplementation (21 hours after yeast inoculation) took place before the first addition of substrate (at 25 hours), improved cell viability and an increased ethanol titer of up to 32 g/L (51% of the theoretical) were found. Conclusions: Laccase treatment in SSCF processes reduces the inhibitory effect that degradation compounds have on the fermenting microorganism. Furthermore, in combination with fed-batch operational mode, laccase supplementation allows the fermentation of wheat straw slurry at high DM consistencies, improving final ethanol concentrations and yields. © 2013 Moreno et al.; licensee BioMed Central Ltd. Source

Moreno A.D.,IMDEA Madrid Institute for Advanced Studies | Moreno A.D.,Chalmers University of Technology | Tomas-Pejo E.,Chalmers University of Technology | Ibarra D.,CIEMAT | And 3 more authors.
Bioresource Technology

This work evaluates the in situ detoxification of inhibitory lignocellulosic broths by laccases to facilitate their fermentation by the xylose-consuming Saccharomyces cerevisiae F12. Treatment of wheat straw slurries with laccases prior to SSCF processes decreased the total phenolic content by 50-80%, reducing the lag phase and increasing the cell viability. After laccase treatment, a negative impact on enzymatic hydrolysis was observed. This effect, together with the low enzymatic hydrolysis yields when increasing consistency, resulted in a decrease in final ethanol yields. Furthermore, when using high substrate loading (20% DM (w/v)), high concentration of inhibitors prevailed in broths and the absence of an extra nitrogen source led to a total cell growth inhibition within the first 24. h in non-treated samples. This inhibition of growth at 20% DM (w/v) was overcome by laccase treatment with no addition of nitrogen, allowing S. cerevisiae F12 to produce more than 22. g/L of ethanol. © 2013 Elsevier Ltd. Source

Moreno A.D.,IMDEA Madrid Institute for Advanced Studies | Ibarra D.,CIEMAT | Ibarra D.,Cellulose and Paper Laboratories | Ballesteros I.,CIEMAT | And 2 more authors.
Bioresource Technology

In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. © 2012 Elsevier Ltd. Source

Rahikainen J.L.,VTT Technical Research Center of Finland | Martin-Sampedro R.,Aalto University | Martin-Sampedro R.,Cellulose and Paper Laboratories | Heikkinen H.,VTT Technical Research Center of Finland | And 6 more authors.
Bioresource Technology

The effect of lignin as an inhibitory biopolymer for the enzymatic hydrolysis of lignocellulosic biomass was studied; specially addressing the role of lignin in non-productive enzyme adsorption. Botanical origin and biomass pre-treatment give rise to differences in lignin structure and the effect of these differences on enzyme binding and inhibition were elucidated. Lignin was isolated from steam explosion (SE) pre-treated and non-treated spruce and wheat straw and used for the preparation of ultrathin films for enzyme binding studies. Binding of Trichoderma reesei Cel7A (CBHI) and the corresponding Cel7A-core, lacking the linker and the cellulose-binding domain, to the lignin films was monitored using a quartz crystal microbalance (QCM). SE pre-treatment altered the lignin structure, leading to increased enzyme adsorption. Thus, the positive effect of SE pre-treatment, opening the cell wall matrix to make polysaccharides more accessible, may be compromised by the structural changes of lignin that increase non-productive enzyme adsorption. © 2013 Elsevier Ltd. Source

Discover hidden collaborations