Time filter

Source Type

Mölndal, Sweden

Lindwall Blom C.,Cellectricon AB | Martensson L.B.,Lund University | Dahlin L.B.,Skane University Hospital
BioMed Research International | Year: 2014

We investigated (a) if activation of the mitogen activated protein kinase (MAPK) pathway was linked to the stress activated protein kinase (SAPK) pathway and (b) if JNK was required for activation of c-Jun in Schwann cells of rat sciatic nerve following injury. To this aim, ERK1/2 and the transcription factors c-Jun and ATF-3 were studied by immunohistochemistry in segments of transected nerves. We utilized pharmacological inhibitors of both signal transduction pathways in vitro to determine the effects on downstream signalling events, such as c-Jun activation, and on Schwann cell survival and proliferation. A transection induces c-Jun and ATF-3 transcription in Schwann cells. These events are followed by Schwann cell activation of c-Jun in the injured nerve. The MAPK inhibitor U0126 blocked ERK1/2 activation and reduced Schwann cell proliferation as well as induction of c-Jun transcription. The JNK inhibitor SP600125 reduced Schwann cell proliferation, but did not affect the expression of ERK1/2 or injury-induced increases in c-Jun or ATF-3 levels. Importantly, nerve injury induces Schwann cell activation of c-Jun by phosphorylation, which, in contrast to in sensory neurons, is JNK independent. MAP kinases, other than JNK, can potentially activate c-Jun in Schwann cells following injury; information that is crucial to create new nerve reconstruction strategies. © 2014 Charlotta Lindwall Blom et al.

Nilsson Skold H.,Gothenburg University | Aspengren S.,Cellectricon AB | Wallin M.,Gothenburg University
Pigment Cell and Melanoma Research | Year: 2013

Physiological color change is important for background matching, thermoregulation as well as signaling and is in vertebrates mediated by synchronous intracellular transport of pigmented organelles in chromatophores. We describe functions of and animal situations where color change occurs. A summary of endogenous and external factors that regulate this color change in fish and amphibians is provided, with special emphasis on extracellular stimuli. We describe not only color change in skin, but also highlight studies on color change that occurs using chromatophores in other areas such as iris and on the inside of the body. In addition, we discuss the growing field that applies melanophores and skin color in toxicology and as biosensors, and point out research areas with future potential. © 2012 John Wiley & Sons A/S.

Disclosed is a method for selective electrofusion of at least two fusion partners having cell-like membranes and cellular or subcellular dimensions, comprising the following steps: A) the fusion partners are brought into contact with each other and B) an electrical field of a strength sufficient to obtain fusion and highly focused on the fusion partners is applied. The fusion partners are independently selected from the group consisting of a single cell, a liposome, a proteoliposome, a synthetic vesicle, an egg cell, an enucleated egg cell, a sperm cell at any development stage and a plant protoplast.

Marine S.,Merck And Co. | Freeman J.,University College London | Riccio A.,University College London | Axenborg M.-L.,Cellectricon AB | And 3 more authors.
Journal of Biomolecular Screening | Year: 2012

Primary neurons in culture are considered to be a highly relevant model in the study of neuronal development and activity. They can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. To address this problem, a capillary electroporation system called Cellaxess Elektra was developed for efficient and reproducible transfection of primary cortical and hippocampal neurons without significant impact on cell morphology and viability. The cells are transfected in any stage of differentiation and development, directly in cell culture plates. Genetic material is delivered in situ to as many as 384 samples at a time, which enables both high-throughput and high-quality screening for hard-to-transfect primary cells, meaning that gene function can be studied on a genome-wide scale in cells previously inaccessible to genetic manipulation. © 2012 Society for Laboratory Automation and Screening.

Discover hidden collaborations