Entity

Time filter

Source Type

Paris, France

Founded in 1999, Cellectis is a gene-editing company focused on developing immunotherapies based on gene edited engineered CAR-T cells . The company’s mission is to develop a new generation of cancer therapies based on engineered T cells. Cellectis capitalizes on its 15 years of expertise in genome engineering - based on its flagship TALEN™ products and meganucleases and pioneering electroporation PulseAgile technology - to create a new generation of immunotherapies. CAR technologies are designed to target surface antigens expressed on cells. Using its life-science-focused, pioneering genome-engineering technologies, Cellectis’ goal is to create innovative products in multiple fields and with various target markets. Cellectis is listed on the NYSE Alternext market . Wikipedia.


Patent
Cellectis | Date: 2014-05-28

The present invention is in the field of CRISPR-Cas system for genome targeting. The present invention relates to new engineered Cas9 scaffolds and uses thereof. More particularly, the present invention relates to methods for genome targeting, cell engineering and therapeutic application. The present invention also relates to vectors, compositions and kits in which the new Cas9 scaffolds of the present invention are used.


The present invention concerns new modular base-per-base specific nucleic acid binding domains (MBBBD) derived from newly identified proteins from the bacterial endosymbiont


The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.


The present invention relates to methods for developing engineered T-cells for immunotherapy and more specifically to methods for modifying T-cells by inactivating at immune checkpoint genes, preferably at least two selected from different pathways, to increase T-cell immune activity. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to highly efficient adoptive immunotherapy strategies for treating cancer and viral infections.


An I-CreI variant, wherein at least one of the two I-Cre1 monomers has at least two substitutions, one in each of the two functional subdomains of the LAGLIDADG core domain situated from positions 26 to 40 and 44 to 77 of I-CreI, said variant being able to cleave a DNA target sequence from the genome of a non-integrating virus, in particular herpes simplex virus (HSV) or Hepatitis B virus (HBV) for use in genome engineering and for in vivo and ex vivo (gene cell therapy) genome therapy as well as the treatment of a virus infection.

Discover hidden collaborations