Paris, France
Paris, France

Founded in 1999, Cellectis is a gene-editing company focused on developing immunotherapies based on gene edited engineered CAR-T cells . The company’s mission is to develop a new generation of cancer therapies based on engineered T cells. Cellectis capitalizes on its 15 years of expertise in genome engineering - based on its flagship TALEN™ products and meganucleases and pioneering electroporation PulseAgile technology - to create a new generation of immunotherapies. CAR technologies are designed to target surface antigens expressed on cells. Using its life-science-focused, pioneering genome-engineering technologies, Cellectis’ goal is to create innovative products in multiple fields and with various target markets. Cellectis is listed on the NYSE Alternext market . Wikipedia.

SEARCH FILTERS
Time filter
Source Type

The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class I I major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism. Such modified T-cell is particularly suitable for allogeneic transplantations, especially because it reduces both the risk of rejection by the hosts immune system and the risk of developing graft versus host disease. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer, infections and auto-immune diseases.


Patent
Cellectis | Date: 2017-04-26

Materials and methods for making plants (e.g., Solanum varieties) with decreased levels of amylose are provided herein. The methods can include making mutations in the gene encoding granule bound starch synthase (GBSS), where the mutations are induced using a rare-cutting endonuclease.


Patent
Cellectis | Date: 2017-03-15

The present invention relates to polypeptides and more particularly to Transcription Activator-Like Effector derived proteins that allow to efficiently target and/or process nucleic acids. The present invention also concerns methods to use these proteins. The present invention also relates to vectors, compositions and kits in which RVD domains and Transcription Activator-Like Effector (TALE) proteins of the present invention are used.


Patent
Cellectis | Date: 2017-03-08

The present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen CS1. Such CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen CS1. The alpha, beta and gamma polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers optimal signal transduction. The invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells expressing them at their surface, in particularly for their use in immunotherapy. The invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially multiple myeloma.


The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a CD33 monoclonal antibody, conferring specific immunity against CD33 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas and leukemia.


This invention relates to materials and methods for gene editing in mammalian cells, and more particularly to methods for gene editing using DNA-guided Argonaute (Ago) interference systems (DAIS) in T-cells.


The present invention pertains to engineered immune cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered immune cells of the present invention are characterized in that at least one gene selected from a gene encoding GCN2 and a gene encoding PRDM1 is inactivated or repressed. Such modified Immune cells are resistant to an arginine and/or tryptophan depleted microenvironment caused by, e.g., tumor cells, which makes the immune cells of the invention particularly suitable for immunotherapy. The invention opens the way to standard and affordable adoptive immunotherapy strategies using immune cells for treating different types of malignancies.


Patent
Cellectis | Date: 2017-04-26

The present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen CD123. Such CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen CD123. The alpha, beta and gamma polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers optimal signal transduction. The invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells expressing them at their surface, in particularly for their use in immunotherapy. The invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially leukemia.


The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derivedfrom a CD123 monoclonal antibody, conferring specific immunity against CD123 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas and leukemia.


The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a BCMA monoclonal antibody, conferring specific immunity against BCMA positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas, multiple myeloma and leukemia.

Loading Cellectis collaborators
Loading Cellectis collaborators